Estimating the state of charge (SOC) of compound energy storage devices in the hybrid energy storage system (HESS) of electric vehicles (EVs) is vital in improving the performance of the EV. The complex and variable charging and discharging current of EVs makes an accurate SOC estimation a challenge. This paper proposes a novel deep learning-based SOC estimation method for lithium-ion battery-supercapacitor HESS EV based on the nonlinear autoregressive with exogenous inputs neural network (NARXNN). The NARXNN is utilized to capture and overcome the complex nonlinear behaviors of lithium-ion batteries and supercapacitors in EVs. The results show that the proposed method improved the SOC estimation accuracy by 91.5% on average with error values below 0.1% and reduced consumption time by 11.4%. Hence validating both the effectiveness and robustness of the proposed method.
translated by 谷歌翻译
锂离子电池(LIBS)的数学建模是先进电池管理中的主要挑战。本文提出了两个新的框架,将基于机器的基于机器的模型集成,以实现LIBS的高精度建模。该框架的特征在于通知物理模型的状态信息的机器学习模型,从而实现物理和机器学习之间的深度集成。基于框架,通过将电化学模型和等效电路模型分别与前馈神经网络组合,构造了一系列混合模型。混合模型在结构中相对令人惊讶,可以在广泛的C速率下提供相当大的预测精度,如广泛的模拟和实验所示。该研究进一步扩展以进行衰老感知混合建模,导致杂交模型意识到意识到健康状态以进行预测。实验表明,该模型在整个Lib的循环寿命中具有很高的预测精度。
translated by 谷歌翻译
与液态燃料相比,电动汽车(EV)的广泛采用受到目前能量和功率密度低的电池的限制,并且会随着时间的推移而衰老和性能恶化。因此,在电动汽车生命周期内监视电池电量状态(SOC)和健康状况(SOH)是一个非常相关的问题。这项工作提出了一个电池数字双结构结构,旨在在运行时准确反映电池动力学。为了确保有关非线性现象的高度正确性,数字双胞胎依赖于在电池演化痕迹随时间训练的数据驱动模型中依靠:SOH模型,反复执行以估计最大电池容量的退化和SOC型号的降级,定期重新训练以反映衰老的影响。拟议的数字双结构将在公共数据集上举例说明,以激发其采用并证明其有效性,并具有很高的准确性和推理以及与车载执行兼容的时间。
translated by 谷歌翻译
负载预测在电力系统的分析和网格计划中至关重要。因此,我们首先提出一种基于联邦深度学习和非侵入性负载监测(NILM)的家庭负载预测方法。就我们所知,这是基于尼尔姆的家庭负载预测中有关联合学习(FL)的首次研究。在这种方法中,通过非侵入性负载监控将集成功率分解为单个设备功率,并且使用联合深度学习模型分别预测单个设备的功率。最后,将单个设备的预测功率值聚合以形成总功率预测。具体而言,通过单独预测电气设备以获得预测的功率,它可以避免由于单个设备的功率信号的强烈依赖性而造成的误差。在联邦深度学习预测模型中,具有权力数据的家主共享本地模型的参数,而不是本地电源数据,从而保证了家庭用户数据的隐私。案例结果表明,所提出的方法比直接预测整个汇总信号的传统方法提供了更好的预测效果。此外,设计和实施了各种联合学习环境中的实验,以验证该方法的有效性。
translated by 谷歌翻译
近年来,在运输电气化方面取得了重大进展。作为主要的储能设备,锂离子电池(LIB)已受到广泛关注。准确地预测健康状况(SOH)不仅可以缓解用户对电池寿命的焦虑,而且还可以为电池管理提供重要信息。本文提出了一种基于视觉变压器(VIT)模型的SOH的预测方法。首先,预定义电压范围的离散充电数据用作输入数据矩阵。然后,电池的循环特征是由VIT捕获的,可以获得可以获得全局特征,并且通过将循环特征与完整连接(FC)层相结合来获得SOH。同时,引入了转移学习(TL),并根据目标任务电池的早期周期数据进一步微调基于源任务电池训练的预测模型,以提供准确的预测。实验表明,与现有的深度学习方法相比,我们的方法可以获得更好的特征表达,从而可以实现更好的预测效果和传递效果。
translated by 谷歌翻译
电池储能系统(BES)可以有效地减轻可变生成的不确定性。降解是不可预防的,难以建模,并且可以预测诸如最受欢迎的锂离子电池(LIB)等电池。在本文中,我们提出了一种数据驱动的方法,以预测给定的预定电池操作专业文件的蝙蝠降解。特别是,提出了基于神经网络的电池降解(NNBD)模型,以用主要电池降解因子的输入来量化电池降解。当将拟议的NNBD模型限制为微电网日期调度(MDS)时,我们可以建立基于电池降解的MDS(BDMDS)模型,该模型可以考虑在拟议的基于循环的电池用途(CBUP)(CBUP)(CBUP)(CBUP)的情况下准确地考虑等效的电池降解成本NNBD模型的方法。由于所提出的NNBD模型是高度非线性的,因此BDMD很难解决。为了解决这个问题,本文提出了一个神经网络和优化解耦启发式(NNODH)算法,以有效解决此神经网络嵌入式优化问题。仿真结果表明,所提出的NNODH算法能够以最低的总成本(包括正常运行成本和电池降解成本)遵守最佳解决方案。
translated by 谷歌翻译
随着高级数字技术的蓬勃发展,用户以及能源分销商有可能获得有关家庭用电的详细信息。这些技术也可以用来预测家庭用电量(又称负载)。在本文中,我们研究了变分模式分解和深度学习技术的使用,以提高负载预测问题的准确性。尽管在文献中已经研究了这个问题,但选择适当的分解水平和提供更好预测性能的深度学习技术的关注较少。这项研究通过研究六个分解水平和五个不同的深度学习网络的影响来弥合这一差距。首先,使用变分模式分解将原始负载轮廓分解为固有模式函数,以减轻其非平稳方面。然后,白天,小时和过去的电力消耗数据作为三维输入序列馈送到四级小波分解网络模型。最后,将与不同固有模式函数相关的预测序列组合在一起以形成聚合预测序列。使用摩洛哥建筑物的电力消耗数据集(MORED)的五个摩洛哥家庭的负载曲线评估了该方法,并根据最新的时间序列模型和基线持久性模型进行了基准测试。
translated by 谷歌翻译
Batteries plays an essential role in modern energy ecosystem and are widely used in daily applications such as cell phones and electric vehicles. For many applications, the health status of batteries plays a critical role in the performance of the system by indicating efficient maintenance and on-time replacement. Directly modeling an individual battery using a computational models based on physical rules can be of low-efficiency, in terms of the difficulties in build such a model and the computational effort of tuning and running it especially on the edge. With the rapid development of sensor technology (to provide more insights into the system) and machine learning (to build capable yet fast model), it is now possible to directly build a data-riven model of the battery health status using the data collected from historical battery data (being possibly local and remote) to predict local battery health status in the future accurately. Nevertheless, most data-driven methods are trained based on the local battery data and lack the ability to extract common properties, such as generations and degradation, in the life span of other remote batteries. In this paper, we utilize a Gaussian process dynamical model (GPDM) to build a data-driven model of battery health status and propose a knowledge transfer method to extract common properties in the life span of all batteries to accurately predict the battery health status with and without features extracted from the local battery. For modern benchmark problems, the proposed method outperform the state-of-the-art methods with significant margins in terms of accuracy and is able to accuracy predict the regeneration process.
translated by 谷歌翻译
With the evolution of power systems as it is becoming more intelligent and interactive system while increasing in flexibility with a larger penetration of renewable energy sources, demand prediction on a short-term resolution will inevitably become more and more crucial in designing and managing the future grid, especially when it comes to an individual household level. Projecting the demand for electricity for a single energy user, as opposed to the aggregated power consumption of residential load on a wide scale, is difficult because of a considerable number of volatile and uncertain factors. This paper proposes a customized GRU (Gated Recurrent Unit) and Long Short-Term Memory (LSTM) architecture to address this challenging problem. LSTM and GRU are comparatively newer and among the most well-adopted deep learning approaches. The electricity consumption datasets were obtained from individual household smart meters. The comparison shows that the LSTM model performs better for home-level forecasting than alternative prediction techniques-GRU in this case. To compare the NN-based models with contrast to the conventional statistical technique-based model, ARIMA based model was also developed and benchmarked with LSTM and GRU model outcomes in this study to show the performance of the proposed model on the collected time series data.
translated by 谷歌翻译
移动网络第五代(5G)的能源消耗是电信行业的主要关注点之一。但是,目前没有一种评估5G基站(BSS)功耗的准确且可进行的方法。在本文中,我们提出了一个新颖的模型,以实现5G多载波BSS功耗的现实表征,该模型以大型数据收集活动为基础。首先,我们定义了允许对多个5G BS产品进行建模的机器学习体系结构。然后,我们利用该框架收集的知识来得出一个现实且可分析的功耗模型,这可以帮助推动理论分析以及功能标准化,开发和优化框架。值得注意的是,我们证明了这种模型具有很高的精度,并且能够捕获节能机制的好处。我们认为,该分析模型是理解5G BSS功耗的基本工具,并准确地优化了网络能源效率。
translated by 谷歌翻译
模型预测控制(MPC)由于其简单的概念,快速动态响应和良好的参考跟踪,已在功率电子设备中广泛使用。但是,它遭受了参数不确定性的困扰,因为它直接依赖于系统的数学模型来预测在下一个采样时间将使用的最佳切换状态。结果,不确定的参数导致了未设计的MPC。因此,本文根据人工神经网络(ANN)提供了无模型的控制策略,以减轻参数不匹配的影响,同时对逆变器的性能产生一些负面影响。该方法包括两个相关阶段。首先,MPC用作专家来控制研究的转换器以提供数据集,而在第二阶段,将获得的数据集用于训练拟议的ANN。此处的案例研究基于一个四级三电池飞行电容器逆变器。在这项研究中,使用各种操作条件,使用MATLAB/SIMULINK来模拟所提出方法的性能。之后,与常规MPC方案相比,报告了仿真结果,这证明了拟议控制策略的出色性能在鲁棒性上针对参数不匹配和低谐波失真(THD),尤其是在系统参数中发生变化时,比较了传统的MPC。此外,根据使用C2000TM-Microcontroller-launchpadxl TMS320F28379D套件提供了基于硬件(HIL)仿真的实验验证,以证明基于ANN的控制策略的适用性,以在A上实施,以在A上实现。 DSP控制器。
translated by 谷歌翻译
多源机电耦合使燃料电池电动汽车(FCEV)的能源管理相对非线性和复杂,尤其是在4轮驱动(4WD)FCEV的类型中。复杂的非线性系统的准确观察状态是FCEV中出色的能源管理的基础。为了释放FCEV的节能潜力,为4WD FCEV提出了一种基于学习的新型鲁棒模型预测控制(LRMPC)策略,从而有助于多个能源之间的合适功率分布。基于机器学习(ML)的精心设计的策略将非线性系统的知识转化为具有出色稳健性能的显式控制方案。首先,具有高回归准确性和出色概括能力的ML方法是离线训练的,以建立SOC的精确状态观察者。然后,使用国家观察者生成的SOC的显式数据表用于抓住准确的状态更改,其输入功能包括车辆状态和车辆组件状态。具体来说,提供未来速度参考的车辆速度估计是由深森林构建的。接下来,将包括显式数据表和车辆速度估计的组件与模型预测控制(MPC)结合使用,以释放FCEV中多释放系统的最新能源节能能力,其名称是LRMPC。最后,在模拟测试中进行详细评估以验证LRMPC的进步性能。相应的结果突出了LRMPC的最佳控制效应和强大的实时应用能力。
translated by 谷歌翻译
传染病仍然是全世界人类疾病和死亡的主要因素之一,其中许多疾病引起了流行的感染波。特定药物和预防疫苗防止大多数流行病的不可用,这使情况变得更糟。这些迫使公共卫生官员,卫生保健提供者和政策制定者依靠由流行病的可靠预测产生的预警系统。对流行病的准确预测可以帮助利益相关者调整对手的对策,例如疫苗接种运动,人员安排和资源分配,以减少手头的情况,这可以转化为减少疾病影响的影响。不幸的是,大多数过去的流行病(例如,登革热,疟疾,肝炎,流感和最新的Covid-19)表现出非线性和非平稳性特征,这是由于它们基于季节性依赖性变化以及这些流行病的性质的扩散波动而引起的。 。我们使用基于最大的重叠离散小波变换(MODWT)自动回归神经网络分析了各种流行时期时间序列数据集,并将其称为EWNET。 MODWT技术有效地表征了流行时间序列中的非平稳行为和季节性依赖性,并在拟议的集合小波网络框架中改善了自回旋神经网络的预测方案。从非线性时间序列的角度来看,我们探讨了所提出的EWNET模型的渐近平稳性,以显示相关的马尔可夫链的渐近行为。我们还理论上还研究了学习稳定性的效果以及在拟议的EWNET模型中选择隐藏的神经元的选择。从实际的角度来看,我们将我们提出的EWNET框架与以前用于流行病预测的几种统计,机器学习和深度学习模型进行了比较。
translated by 谷歌翻译
在工业应用中,电动机的故障近一半是由于滚动元件轴承(REB)的退化引起的。因此,准确估算REB的剩余使用寿命(RUL)对于确保机械系统的可靠性和安全至关重要。为了应对这一挑战,基于模型的方法通常受到数学建模的复杂性的限制。另一方面,传统的数据驱动方法需要巨大的努力来提取降解功能并构建健康指数。在本文中,提出了一个新颖的在线数据驱动框架,以利用深度卷积神经网络(CNN)的采用来预测轴承的统治。更具体地说,训练轴承的原始振动首先是使用Hilbert-huang变换(HHT)处理的,并将新型的非线性降解指标构建为学习标签。然后使用CNN来识别提取的降解指示器和训练轴承振动之间的隐藏模式,这使得可以自动估计测试轴承的降解。最后,通过使用$ \ epsilon $ -Support向量回归模型来预测测试轴承的规定。与最先进的方法相比,提出的规则估计框架的出色性能通过实验结果证明。提出的CNN模型的一般性也通过转移到经历不同操作条件的轴承来验证。
translated by 谷歌翻译
The fifth generation of the Radio Access Network (RAN) has brought new services, technologies, and paradigms with the corresponding societal benefits. However, the energy consumption of 5G networks is today a concern. In recent years, the design of new methods for decreasing the RAN power consumption has attracted interest from both the research community and standardization bodies, and many energy savings solutions have been proposed. However, there is still a need to understand the power consumption behavior of state-ofthe-art base station architectures, such as multi-carrier active antenna units (AAUs), as well as the impact of different network parameters. In this paper, we present a power consumption model for 5G AAUs based on artificial neural networks. We demonstrate that this model achieves good estimation performance, and it is able to capture the benefits of energy saving when dealing with the complexity of multi-carrier base stations architectures. Importantly, multiple experiments are carried out to show the advantage of designing a general model able to capture the power consumption behaviors of different types of AAUs. Finally, we provide an analysis of the model scalability and the training data requirements.
translated by 谷歌翻译
的可再生能源技术的迅速增长使微电网(MG)的概念被广泛接受的电力系统。由于直流配电系统的优势,如易集成储能和更少的系统损耗,DC MG如今吸引了显著的关注。如PI或PID线性控制器成熟,并通过功率电子工业中广泛使用,但作为系统参数改变它们的性能不是最佳的。在这项研究中,人工神经网络(ANN)的电压控制策略,提出了DC-DC升压转换器。在本文中,所述模型预测控制(MPC)是用来作为一个专家,其提供数据来训练ANN提出。作为ANN是微调,那么它被直接用于控制升压DC转换器。人工神经网络的主要优点在于,神经网络系统识别降低了系统模型的不准确性,即使不准确参数,并且具有相比MPC更少的计算负担,由于其平行结构。为了验证所提出的ANN的性能,广泛MATLAB / Simulink的仿真进行。仿真结果表明,基于人工神经网络控制策略已根据不同的负载条件比较PI控制器更好的性能。经训练的神经网络模型的准确度是约97%,这使得它适合用于DC微电网的应用程序。
translated by 谷歌翻译
通过有效的监控和调整电池操作条件,促进了锂离子电池的寿命和安全性。因此,为电池管理系统上的健康状况(SOH)监测提供快速准确的算法至关重要。由于对电池劣化的复杂性和多种因素的复杂性和多种因素的复杂性,特别是因为不同的劣化过程发生在各种时间尺度,并且它们的相互作用发挥着重要作用。数据驱动方法通过用统计或机器学习模型近似复杂进程来绕过这个问题。本文提出了一种数据驱动方法,在电池劣化的背景下,尽管其简单性和易于计算:多变量分数多项式(MFP)回归。模型从一个耗尽的细胞的历史数据训练,并用于预测其他细胞的SOH。数据的特征在于模拟动态操作条件的载荷变化。考虑了两个假设情景:假设最近的容量测量是已知的,则另一个仅基于标称容量。结果表明,在考虑到电池寿命的电池结束时,通过其历史数据的历史数据受到它们的历史数据的影响,电池的降解行为受到其历史数据的影响。此外,我们提供了一种多因素视角,分析了每个不同因素的影响程度。最后,我们与长期内记忆神经网络和其他来自相同数据集的文献的其他作品进行比较。我们得出结论,MFP回归与当代作品有效和竞争,提供了几种额外的优点。在可解释性,恒定性和可实现性方面。
translated by 谷歌翻译
非侵入性负载监控(NILM)是将总功率消耗分为单个子组件的任务。多年来,已经合并了信号处理和机器学习算法以实现这一目标。关于最先进的方法,进行了许多出版物和广泛的研究工作,以涉及最先进的方法。科学界最初使用机器学习工具的尼尔姆问题制定和描述的最初兴趣已经转变为更实用的尼尔姆。如今,我们正处于成熟的尼尔姆时期,在现实生活中的应用程序方案中尝试使用尼尔姆。因此,算法的复杂性,可转移性,可靠性,实用性和普遍的信任度是主要的关注问题。这篇评论缩小了早期未成熟的尼尔姆时代与成熟的差距。特别是,本文仅对住宅电器的尼尔姆方法提供了全面的文献综述。本文分析,总结并介绍了大量最近发表的学术文章的结果。此外,本文讨论了这些方法的亮点,并介绍了研究人员应考虑的研究困境,以应用尼尔姆方法。最后,我们表明需要将传统分类模型转移到一个实用且值得信赖的框架中。
translated by 谷歌翻译
作为自然现象的地震,历史上不断造成伤害和人类生活的损失。地震预测是任何社会计划的重要方面,可以增加公共准备,并在很大程度上减少损坏。然而,由于地震的随机特征以及实现了地震预测的有效和可靠模型的挑战,迄今为止努力一直不足,需要新的方法来解决这个问题。本文意识到​​这些问题,提出了一种基于注意机制(AM),卷积神经网络(CNN)和双向长短期存储器(BILSTM)模型的新型预测方法,其可以预测数量和最大幅度中国大陆各地区的地震为基于该地区的地震目录。该模型利用LSTM和CNN具有注意机制,以更好地关注有效的地震特性并产生更准确的预测。首先,将零阶保持技术应用于地震数据上的预处理,使得模型的输入数据更适当。其次,为了有效地使用空间信息并减少输入数据的维度,CNN用于捕获地震数据之间的空间依赖性。第三,使用Bi-LSTM层来捕获时间依赖性。第四,引入了AM层以突出其重要的特征来实现更好的预测性能。结果表明,该方法具有比其他预测方法更好的性能和概括能力。
translated by 谷歌翻译
For Prognostics and Health Management (PHM) of Lithium-ion (Li-ion) batteries, many models have been established to characterize their degradation process. The existing empirical or physical models can reveal important information regarding the degradation dynamics. However, there is no general and flexible methods to fuse the information represented by those models. Physics-Informed Neural Network (PINN) is an efficient tool to fuse empirical or physical dynamic models with data-driven models. To take full advantage of various information sources, we propose a model fusion scheme based on PINN. It is implemented by developing a semi-empirical semi-physical Partial Differential Equation (PDE) to model the degradation dynamics of Li-ion-batteries. When there is little prior knowledge about the dynamics, we leverage the data-driven Deep Hidden Physics Model (DeepHPM) to discover the underlying governing dynamic models. The uncovered dynamics information is then fused with that mined by the surrogate neural network in the PINN framework. Moreover, an uncertainty-based adaptive weighting method is employed to balance the multiple learning tasks when training the PINN. The proposed methods are verified on a public dataset of Li-ion Phosphate (LFP)/graphite batteries.
translated by 谷歌翻译