For Prognostics and Health Management (PHM) of Lithium-ion (Li-ion) batteries, many models have been established to characterize their degradation process. The existing empirical or physical models can reveal important information regarding the degradation dynamics. However, there is no general and flexible methods to fuse the information represented by those models. Physics-Informed Neural Network (PINN) is an efficient tool to fuse empirical or physical dynamic models with data-driven models. To take full advantage of various information sources, we propose a model fusion scheme based on PINN. It is implemented by developing a semi-empirical semi-physical Partial Differential Equation (PDE) to model the degradation dynamics of Li-ion-batteries. When there is little prior knowledge about the dynamics, we leverage the data-driven Deep Hidden Physics Model (DeepHPM) to discover the underlying governing dynamic models. The uncovered dynamics information is then fused with that mined by the surrogate neural network in the PINN framework. Moreover, an uncertainty-based adaptive weighting method is employed to balance the multiple learning tasks when training the PINN. The proposed methods are verified on a public dataset of Li-ion Phosphate (LFP)/graphite batteries.
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
锂离子电池(LIBS)的数学建模是先进电池管理中的主要挑战。本文提出了两个新的框架,将基于机器的基于机器的模型集成,以实现LIBS的高精度建模。该框架的特征在于通知物理模型的状态信息的机器学习模型,从而实现物理和机器学习之间的深度集成。基于框架,通过将电化学模型和等效电路模型分别与前馈神经网络组合,构造了一系列混合模型。混合模型在结构中相对令人惊讶,可以在广泛的C速率下提供相当大的预测精度,如广泛的模拟和实验所示。该研究进一步扩展以进行衰老感知混合建模,导致杂交模型意识到意识到健康状态以进行预测。实验表明,该模型在整个Lib的循环寿命中具有很高的预测精度。
translated by 谷歌翻译
深度学习方法的应用加快了挑战性电流问题的分辨率,最近显示出令人鼓舞的结果。但是,电力系统动力学不是快照,稳态操作。必须考虑这些动力学,以确保这些模型提供的最佳解决方案遵守实用的动力约束,避免频率波动和网格不稳定性。不幸的是,由于其高计算成本,基于普通或部分微分方程的动态系统模型通常不适合在控制或状态估计中直接应用。为了应对这些挑战,本文介绍了一种机器学习方法,以近乎实时近似电力系统动态的行为。该拟议的框架基于梯度增强的物理知识的神经网络(GPINNS),并编码有关电源系统的基本物理定律。拟议的GPINN的关键特征是它的训练能力而无需生成昂贵的培训数据。该论文说明了在单机无限总线系统中提出的方法在预测转子角度和频率的前进和反向问题中的潜力,以及不确定的参数,例如惯性和阻尼,以展示其在一系列电力系统应用中的潜力。
translated by 谷歌翻译
Given ample experimental data from a system governed by differential equations, it is possible to use deep learning techniques to construct the underlying differential operators. In this work we perform symbolic discovery of differential operators in a situation where there is sparse experimental data. This small data regime in machine learning can be made tractable by providing our algorithms with prior information about the underlying dynamics. Physics Informed Neural Networks (PINNs) have been very successful in this regime (reconstructing entire ODE solutions using only a single point or entire PDE solutions with very few measurements of the initial condition). We modify the PINN approach by adding a neural network that learns a representation of unknown hidden terms in the differential equation. The algorithm yields both a surrogate solution to the differential equation and a black-box representation of the hidden terms. These hidden term neural networks can then be converted into symbolic equations using symbolic regression techniques like AI Feynman. In order to achieve convergence of these neural networks, we provide our algorithms with (noisy) measurements of both the initial condition as well as (synthetic) experimental data obtained at later times. We demonstrate strong performance of this approach even when provided with very few measurements of noisy data in both the ODE and PDE regime.
translated by 谷歌翻译
通过有效的监控和调整电池操作条件,促进了锂离子电池的寿命和安全性。因此,为电池管理系统上的健康状况(SOH)监测提供快速准确的算法至关重要。由于对电池劣化的复杂性和多种因素的复杂性和多种因素的复杂性,特别是因为不同的劣化过程发生在各种时间尺度,并且它们的相互作用发挥着重要作用。数据驱动方法通过用统计或机器学习模型近似复杂进程来绕过这个问题。本文提出了一种数据驱动方法,在电池劣化的背景下,尽管其简单性和易于计算:多变量分数多项式(MFP)回归。模型从一个耗尽的细胞的历史数据训练,并用于预测其他细胞的SOH。数据的特征在于模拟动态操作条件的载荷变化。考虑了两个假设情景:假设最近的容量测量是已知的,则另一个仅基于标称容量。结果表明,在考虑到电池寿命的电池结束时,通过其历史数据的历史数据受到它们的历史数据的影响,电池的降解行为受到其历史数据的影响。此外,我们提供了一种多因素视角,分析了每个不同因素的影响程度。最后,我们与长期内记忆神经网络和其他来自相同数据集的文献的其他作品进行比较。我们得出结论,MFP回归与当代作品有效和竞争,提供了几种额外的优点。在可解释性,恒定性和可实现性方面。
translated by 谷歌翻译
这项工作与发现物理系统的偏微分方程(PDE)有关。现有方法证明了有限观察结果的PDE识别,但未能保持令人满意的噪声性能,部分原因是由于次优估计衍生物并发现了PDE系数。我们通过引入噪音吸引物理学的机器学习(NPIML)框架来解决问题,以在任意分布后从数据中发现管理PDE。我们的建议是双重的。首先,我们提出了几个神经网络,即求解器和预选者,这些神经网络对隐藏的物理约束产生了可解释的神经表示。在经过联合训练之后,求解器网络将近似潜在的候选物,例如部分衍生物,然后将其馈送到稀疏的回归算法中,该算法最初公布了最有可能的PERSIMISIAL PDE,根据信息标准决定。其次,我们提出了基于离散的傅立叶变换(DFT)的Denoising物理信息信息网络(DPINNS),以提供一组最佳的鉴定PDE系数,以符合降低降噪变量。 Denoising Pinns的结构被划分为前沿投影网络和PINN,以前学到的求解器初始化。我们对五个规范PDE的广泛实验确认,该拟议框架为PDE发现提供了一种可靠,可解释的方法,适用于广泛的系统,可能会因噪声而复杂。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
Physics-Informed Neural Networks (PINN) are algorithms from deep learning leveraging physical laws by including partial differential equations together with a respective set of boundary and initial conditions as penalty terms into their loss function. In this work, we observe the significant role of correctly weighting the combination of multiple competitive loss functions for training PINNs effectively. To this end, we implement and evaluate different methods aiming at balancing the contributions of multiple terms of the PINNs loss function and their gradients. After reviewing of three existing loss scaling approaches (Learning Rate Annealing, GradNorm and SoftAdapt), we propose a novel self-adaptive loss balancing scheme for PINNs named \emph{ReLoBRaLo} (Relative Loss Balancing with Random Lookback). We extensively evaluate the performance of the aforementioned balancing schemes by solving both forward as well as inverse problems on three benchmark PDEs for PINNs: Burgers' equation, Kirchhoff's plate bending equation and Helmholtz's equation. The results show that ReLoBRaLo is able to consistently outperform the baseline of existing scaling methods in terms of accuracy, while also inducing significantly less computational overhead.
translated by 谷歌翻译
科学和工程学中的一个基本问题是设计最佳的控制政策,这些政策将给定的系统转向预期的结果。这项工作提出了同时求解给定系统状态和最佳控制信号的控制物理信息的神经网络(控制PINNS),在符合基础物理定律的一个阶段框架中。先前的方法使用两个阶段的框架,该框架首先建模然后按顺序控制系统。相比之下,控制PINN将所需的最佳条件纳入其体系结构和损耗函数中。通过解决以下开环的最佳控制问题来证明控制PINN的成功:(i)一个分析问题,(ii)一维热方程,以及(iii)二维捕食者捕食者问题。
translated by 谷歌翻译
在本文中,我们利用了最近的物理信息神经网络(PINN)的进步,并开发了一种基于通用的Pinn的框架,以评估多状态系统(MSS)的可靠性。提议的方法包括两个主要步骤。在第一步中,我们将MS的可靠性评估作为使用Pinn框架的机器学习问题。构建具有两个单独损耗组的前馈神经网络以编码由MS中的常微分方程(ODES)管理的初始条件和状态转换。接下来,从多任务学习的角度来看,我们解决了Pinn中的背部传播梯度大小的高不平衡问题。特别是,我们将损失函数中的每个元素视为个别任务,采用名为Projecting冲突渐变(PCGRAD)的梯度手术方法,其中任务的渐变将投影到具有冲突梯度的任何其他任务的常规平面上。梯度投影操作显着降低了训练销时梯度干扰引起的有害影响,从而将PINN的收敛速度加速到高精度解决方案到MSS可靠性评估。通过提出的基于Pinn的框架,我们在几乎不受时间或依赖状态转换和系统尺度从小到介质时,研究其对MSS可靠性评估的应用程序的应用。结果表明,基于Pinn的框架在MSS可靠性评估中显示了通用和显着性能,并且Pinn中的PCGrad掺入了溶液质量和收敛速度的大量提高。
translated by 谷歌翻译
The identification of material parameters occurring in constitutive models has a wide range of applications in practice. One of these applications is the monitoring and assessment of the actual condition of infrastructure buildings, as the material parameters directly reflect the resistance of the structures to external impacts. Physics-informed neural networks (PINNs) have recently emerged as a suitable method for solving inverse problems. The advantages of this method are a straightforward inclusion of observation data. Unlike grid-based methods, such as the finite element method updating (FEMU) approach, no computational grid and no interpolation of the data is required. In the current work, we aim to further develop PINNs towards the calibration of the linear-elastic constitutive model from full-field displacement and global force data in a realistic regime. We show that normalization and conditioning of the optimization problem play a crucial role in this process. Therefore, among others, we identify the material parameters for initial estimates and balance the individual terms in the loss function. In order to reduce the dependence of the identified material parameters on local errors in the displacement approximation, we base the identification not on the stress boundary conditions but instead on the global balance of internal and external work. In addition, we found that we get a better posed inverse problem if we reformulate it in terms of bulk and shear modulus instead of Young's modulus and Poisson's ratio. We demonstrate that the enhanced PINNs are capable of identifying material parameters from both experimental one-dimensional data and synthetic full-field displacement data in a realistic regime. Since displacement data measured by, e.g., a digital image correlation (DIC) system is noisy, we additionally investigate the robustness of the method to different levels of noise.
translated by 谷歌翻译
Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems.
translated by 谷歌翻译
数据驱动的PDE的发现最近取得了巨大进展,许多规范的PDE已成功地发现了概念验证。但是,在没有事先参考的情况下,确定最合适的PDE在实际应用方面仍然具有挑战性。在这项工作中,提出了物理信息的信息标准(PIC),以合成发现的PDE的简约和精度。所提出的PIC可在不同的物理场景中七个规范的PDE上获得最新的鲁棒性,并稀疏的数据,这证实了其处理困难情况的能力。该图片还用于从实际的物理场景中从微观模拟数据中发现未开采的宏观管理方程。结果表明,发现的宏观PDE精确且简约,并满足基础的对称性,从而有助于对物理过程的理解和模拟。 PIC的命题可以在发现更广泛的物理场景中发现未透视的管理方程式中PDE发现的实际应用。
translated by 谷歌翻译
作为有关健康状况的重要组成部分,数据驱动的先进健康(SOH)估计已成为锂离子电池(LIBS)的主导地位。为了处理跨电池的数据差异,当前的SOH估计模型参与转移学习(TL),该模型保留通过重复使用离线训练模型的部分结构而获得的APRIORII知识。但是,电池完整生命周期的多种降解模式使追求TL的挑战。引入了阶段的概念来描述呈现出类似降解模式的连续循环的集合。提出了一个可转移的多级SOH估计模型,以在同一阶段跨电池执行TL,由四个步骤组成。首先,有了确定的阶段信息,将来自源电池的原始循环数据重建到具有高尺寸的相空间中,从而探索传感器有限的隐藏动力学。接下来,在每个阶段跨循环的域不变表示是通过与重建数据的循环差异子空间提出的。第三,考虑到不同阶段之间不平衡的放电循环,提出了一个由长期短期存储网络和具有拟议时间胶囊网络的强大模型组成的切换估计策略,以提高估计精度。最后,当目标电池的循环一致性漂移时,更新方案会补偿估计错误。提出的方法在各种传输任务中的竞争算法优于其竞争算法,用于带有三个电池的运营基准测试。
translated by 谷歌翻译
Although physics-informed neural networks(PINNs) have progressed a lot in many real applications recently, there remains problems to be further studied, such as achieving more accurate results, taking less training time, and quantifying the uncertainty of the predicted results. Recent advances in PINNs have indeed significantly improved the performance of PINNs in many aspects, but few have considered the effect of variance in the training process. In this work, we take into consideration the effect of variance and propose our VI-PINNs to give better predictions. We output two values in the final layer of the network to represent the predicted mean and variance respectively, and the latter is used to represent the uncertainty of the output. A modified negative log-likelihood loss and an auxiliary task are introduced for fast and accurate training. We perform several experiments on a wide range of different problems to highlight the advantages of our approach. The results convey that our method not only gives more accurate predictions but also converges faster.
translated by 谷歌翻译
机器学习中的不确定性量化(UQ)目前正在引起越来越多的研究兴趣,这是由于深度神经网络在不同领域的快速部署,例如计算机视觉,自然语言处理以及对风险敏感应用程序中可靠的工具的需求。最近,还开发了各种机器学习模型,以解决科学计算领域的问题,并适用于计算科学和工程(CSE)。物理知识的神经网络和深层操作员网络是两个这样的模型,用于求解部分微分方程和学习操作员映射。在这方面,[45]中提供了专门针对科学机器学习(SCIML)模型量身定制的UQ方法的全面研究。然而,尽管具有理论上的优点,但这些方法的实施并不简单,尤其是在大规模的CSE应用程序中,阻碍了他们在研究和行业环境中的广泛采用。在本文中,我们提出了一个开源python图书馆(https://github.com/crunch-uq4mi),称为Neuraluq,并伴有教育教程,用于以方便且结构化的方式采用SCIML的UQ方法。该图书馆既专为教育和研究目的,都支持多种现代UQ方法和SCIML模型。它基于简洁的工作流程,并促进了用户的灵活就业和易于扩展。我们首先提出了神经脉的教程,随后在四个不同的示例中证明了其适用性和效率,涉及动态系统以及高维参数和时间依赖性PDE。
translated by 谷歌翻译
化学动力学和反应工程包括解除反应机制的现象学框架,优化反应性能和化学过程的合理设计。这里,我们利用前馈人工神经网络作为基础函数来解决由描述微蓄电图(MKMS)的差分代数方程(DAE)约束的常微分方程(杂物)。我们提出了一种代数框架,用于反应网络,基本反应类型和化学物种的数学描述和分类。在该框架下,我们证明了在正则化的多目标优化设置中同时训练了神经网络和动力学模型参数,通过估计来自合成实验数据的动力学参数来导致逆问题的解决方案。我们分析了一组方案,以确定可以从瞬态动力学数据检索动力学参数的程度,并评估方法的鲁棒性相对于统计噪声。这种反向动力学杂散的方法可以帮助基于瞬态数据阐明反应机制。
translated by 谷歌翻译
在过去的十年中,在许多工程领域,包括自动驾驶汽车,医疗诊断和搜索引擎,甚至在艺术创作中,神经网络(NNS)已被证明是极有效的工具。确实,NN通常果断地超过传统算法。直到最近才引起重大兴趣的一个领域是使用NNS设计数值求解器,尤其是用于离散的偏微分方程。最近的几篇论文考虑使用NNS来开发多机方法,这些方法是解决离散的偏微分方程和其他稀疏矩阵问题的领先计算工具。我们扩展了这些新想法,重点关注所谓的放松操作员(也称为Smoothers),这是Multigrid算法的重要组成部分,在这种情况下尚未受到很多关注。我们探索了一种使用NNS学习带有随机系数的扩散算子的放松参数的方法,用于雅各比类型的Smoothers和4Color Gaussseidel Smoothers。后者的产量异常高效且易于使连续的放松(SOR)SmoOthors平行。此外,这项工作表明,使用两个网格方法在相对较小的网格上学习放松参数,而Gelfand的公式可以轻松实现。这些方法有效地产生了几乎最佳的参数,从而显着提高了大网格上的Multigrid算法的收敛速率。
translated by 谷歌翻译