在工业应用中,电动机的故障近一半是由于滚动元件轴承(REB)的退化引起的。因此,准确估算REB的剩余使用寿命(RUL)对于确保机械系统的可靠性和安全至关重要。为了应对这一挑战,基于模型的方法通常受到数学建模的复杂性的限制。另一方面,传统的数据驱动方法需要巨大的努力来提取降解功能并构建健康指数。在本文中,提出了一个新颖的在线数据驱动框架,以利用深度卷积神经网络(CNN)的采用来预测轴承的统治。更具体地说,训练轴承的原始振动首先是使用Hilbert-huang变换(HHT)处理的,并将新型的非线性降解指标构建为学习标签。然后使用CNN来识别提取的降解指示器和训练轴承振动之间的隐藏模式,这使得可以自动估计测试轴承的降解。最后,通过使用$ \ epsilon $ -Support向量回归模型来预测测试轴承的规定。与最先进的方法相比,提出的规则估计框架的出色性能通过实验结果证明。提出的CNN模型的一般性也通过转移到经历不同操作条件的轴承来验证。
translated by 谷歌翻译
设想制造部门受到基于人工智能的技术的严重影响,计算能力和数据量的大幅增加。制造业领域的一个核心挑战在于一般框架的要求,以确保满足不同制造应用中的诊断和监视性能。在这里,我们提出了一个通用数据驱动的端到端框架,用于监视制造系统。该框架是从深度学习技术中得出的,评估了融合的感觉测量值,以检测甚至预测故障和磨损条件。这项工作利用了深度学习的预测能力,从嘈杂的时间表数据中自动提取隐藏的降解功能。我们已经在从各种制造应用中绘制的十个代表性数据集上试验了拟议的框架。结果表明,该框架在检查的基准应用中表现良好,可以在不同的情况下应用,这表明其潜在用作智能制造中的关键角石。
translated by 谷歌翻译
REED继电器是功能测试的基本组成部分,与电子产品的成功质量检查密切相关。为了为REED继电器提供准确的剩余使用寿命(RUL)估计,根据以下三个考虑,提出了具有降解模式聚类的混合深度学习网络。首先,对于REED继电器,观察到多种降解行为,因此提供了基于动态的$ K $ -MEANS聚类,以区分彼此的退化模式。其次,尽管适当的功能选择具有重要意义,但很少有研究可以指导选择。提出的方法建议进行操作规则,以实施轻松实施。第三,提出了用于剩余使用寿命估计的神经网络(RULNET),以解决卷积神经网络(CNN)在捕获顺序数据的时间信息中的弱点,该信息在卷积操作的高级特征表示后结合了时间相关能力。通过这种方式,lulnet的三种变体由健康指标,具有自组织地图的功能或具有曲线拟合的功能构建。最终,将提出的混合模型与典型的基线模型(包括CNN和长期记忆网络(LSTM))进行了比较,该模型通过具有两个不同不同降级方式的实用REED继电器数据集进行了比较。两种降解案例的结果表明,所提出的方法在索引均方根误差方面优于CNN和LSTM。
translated by 谷歌翻译
滚动轴承是工业机器中最广泛使用的轴承之一。滚动轴承条件的劣化可导致旋转机械的总失效。基于AI的方法广泛应用于滚动轴承的诊断。已显示杂交NN的方法来达到最佳诊断结果。通常,原始数据由安装在机器壳体上的加速度计产生。然而,每个信号的诊断实用性高度依赖于相应加速度计的位置。本文提出了一种新型混合CNN-MLP模型的诊断方法,其结合了混合输入来执行滚动轴承诊断。该方法使用来自轴安装的无线加速度传感器的加速度数据成功地检测和定位轴承缺陷。实验结果表明,混合模型优于分别操作的CNN和MLP型号,并且可以为轴承故障提供99,6%的高检测精度,而CNN的98%和MLP型号的81%。
translated by 谷歌翻译
卷积神经网络(CNN)由于其强大的特征提取和分类功能而广泛用于机械系统的故障诊断。但是,CNN是一个典型的黑盒模型,CNN决策的机制尚不清楚,这限制了其在高可授权要求的故障诊断方案中的应用。为了解决这个问题,我们提出了一个新颖的可解释的神经网络,称为时频网(TFN),其中物理上有意义的时频变换(TFT)方法被嵌入传统的卷积层中,作为自适应预处理层。这个称为时频卷积(TFCONV)层的预处理层受到精心设计的内核函数的约束,以提取与故障相关的时间频率信息。它不仅改善了诊断性能,而且还揭示了频域中CNN预测的逻辑基础。不同的TFT方法对应于TFCONV层的不同内核函数。在这项研究中,考虑了四种典型的TFT方法来制定TFN,并且通过三个机械故障诊断实验证明了它们的有效性和解释性。实验结果还表明,所提出的TFCONV层可以很容易地推广到具有不同深度的其他CNN。 TFN的代码可在https://github.com/chenqian0618/tfn上获得。
translated by 谷歌翻译
作为自然现象的地震,历史上不断造成伤害和人类生活的损失。地震预测是任何社会计划的重要方面,可以增加公共准备,并在很大程度上减少损坏。然而,由于地震的随机特征以及实现了地震预测的有效和可靠模型的挑战,迄今为止努力一直不足,需要新的方法来解决这个问题。本文意识到​​这些问题,提出了一种基于注意机制(AM),卷积神经网络(CNN)和双向长短期存储器(BILSTM)模型的新型预测方法,其可以预测数量和最大幅度中国大陆各地区的地震为基于该地区的地震目录。该模型利用LSTM和CNN具有注意机制,以更好地关注有效的地震特性并产生更准确的预测。首先,将零阶保持技术应用于地震数据上的预处理,使得模型的输入数据更适当。其次,为了有效地使用空间信息并减少输入数据的维度,CNN用于捕获地震数据之间的空间依赖性。第三,使用Bi-LSTM层来捕获时间依赖性。第四,引入了AM层以突出其重要的特征来实现更好的预测性能。结果表明,该方法具有比其他预测方法更好的性能和概括能力。
translated by 谷歌翻译
轴承诊断对于降低旋转机器的损害风险并进一步改善经济利润至关重要。最近,以深度学习为代表的机器学习在轴承诊断方面取得了巨大进展。但是,将深度学习应用到这样的任务仍然面临一个主要问题。众所周知,深层网络是黑匣子。很难知道模型如何分类分类背后的正常原理和物理原理的错误信号。为了解决可解释性问题,首先,我们原型是一个具有最近发明的二次神经元的卷积网络。由于二次神经元的特征表示能力,这种二次神经元授权网络可以鉴定噪声轴承数据。此外,我们通过将学到的二次功能分解为类似于注意力的二次神经元(称为Qttention)的注意机制独立得出了注意力机制,从而使模型具有固有解释的二次神经元。公众和我们的数据集进行的实验表明,提出的网络可以促进有效且可解释的轴承故障诊断。
translated by 谷歌翻译
通过深度学习(DL)大大扩展了数据驱动故障诊断模型的范围。然而,经典卷积和反复化结构具有计算效率和特征表示的缺陷,而基于注意机制的最新变压器架构尚未应用于该字段。为了解决这些问题,我们提出了一种新颖的时变电片(TFT)模型,其灵感来自序列加工的香草变压器大规模成功。特别是,我们设计了一个新的笨蛋和编码器模块,以从振动信号的时频表示(TFR)中提取有效抽象。在此基础上,本文提出了一种基于时变电片的新的端到端故障诊断框架。通过轴承实验数据集的案例研究,我们构建了最佳变压器结构并验证了其故障诊断性能。与基准模型和其他最先进的方法相比,证明了所提出的方法的优越性。
translated by 谷歌翻译
无监督的域适应(UDA)显示出近年来工作条件下的轴承故障诊断的显着结果。但是,大多数UDA方法都不考虑数据的几何结构。此外,通常应用全局域适应技术,这忽略了子域之间的关系。本文通过呈现新的深亚域适应图卷积神经网络(DSAGCN)来解决提到的挑战,具有两个关键特性:首先,采用图形卷积神经网络(GCNN)来模拟数据结构。二,对抗域适应和局部最大平均差异(LMMD)方法同时应用,以对准子域的分布并降低相关子域和全局域之间的结构差异。 CWRU和Paderborn轴承数据集用于验证DSAGCN方法的比较模型之间的效率和优越性。实验结果表明,将结构化子域与域适应方法对准,以获得无监督故障诊断的准确数据驱动模型。
translated by 谷歌翻译
虽然数据驱动的故障诊断方法已被广泛应用,但模型培训需要大规模标记数据。然而,在真正的行业实施这一点难以阻碍这些方法的应用。因此,迫切需要在这种情况下运行良好的有效诊断方法。本​​研究中,多级半监督改进的深度嵌入式聚类(MS-SSIDEC)方法,将半监督学习与改进的深度嵌入式聚类相结合(IDEC),建议共同探索稀缺标记的数据和大规模的未标记数据。在第一阶段,提出了一种可以自动将未标记的数据映射到低维特征空间中的跳过连接的卷积自动编码器(SCCAE),并预先培训以成为故障特征提取器。在第二阶段,提出了一个半监督的改进的深嵌入式聚类(SSIDEC)网络以进行聚类。首先用可用标记数据初始化,然后用于同时优化群集标签分配,并使要素空间更加群集。为了解决过度装备现象,在本阶段将虚拟的对抗培训(增值税)作为正则化术语。在第三阶段,伪标签是通过SSIDEC的高质量结果获得的。标记的数据集可以由这些伪标记的数据增强,然后利用以训练轴承故障诊断模型。来自滚动轴承的两个振动数据数据集用于评估所提出的方法的性能。实验结果表明,该方法在半监督和无监督的故障诊断任务中实现了有希望的性能。该方法通过有效地探索无监督数据,提供了在有限标记样本的情况下的故障诊断方法。
translated by 谷歌翻译
粒子加速器是复杂的设施,可产生大量的结构化数据,并具有明确的优化目标以及精确定义的控制要求。因此,它们自然适合数据驱动的研究方法。来自传感器和监视加速器形式的多元时间序列的数据。在加速器控制和诊断方面,快速的先发制人方法是高度首选的,数据驱动的时间序列预测方法的应用尤其有希望。这篇综述提出了时间序列预测问题,并总结了现有模型,并在各个科学领域的应用中进行了应用。引入了粒子加速器领域中的几次和将来的尝试。预测到粒子加速器的时间序列的应用显示出令人鼓舞的结果和更广泛使用的希望,现有的问题(例如数据一致性和兼容性)已开始解决。
translated by 谷歌翻译
随着高级数字技术的蓬勃发展,用户以及能源分销商有可能获得有关家庭用电的详细信息。这些技术也可以用来预测家庭用电量(又称负载)。在本文中,我们研究了变分模式分解和深度学习技术的使用,以提高负载预测问题的准确性。尽管在文献中已经研究了这个问题,但选择适当的分解水平和提供更好预测性能的深度学习技术的关注较少。这项研究通过研究六个分解水平和五个不同的深度学习网络的影响来弥合这一差距。首先,使用变分模式分解将原始负载轮廓分解为固有模式函数,以减轻其非平稳方面。然后,白天,小时和过去的电力消耗数据作为三维输入序列馈送到四级小波分解网络模型。最后,将与不同固有模式函数相关的预测序列组合在一起以形成聚合预测序列。使用摩洛哥建筑物的电力消耗数据集(MORED)的五个摩洛哥家庭的负载曲线评估了该方法,并根据最新的时间序列模型和基线持久性模型进行了基准测试。
translated by 谷歌翻译
轴承是容易出乎意料断层的旋转机的重要组成部分之一。因此,轴承诊断和状况监测对于降低众多行业的运营成本和停机时间至关重要。在各种生产条件下,轴承可以在一系列载荷和速度下进行操作,这会导致与每种故障类型相关的不同振动模式。正常数据很足够,因为系统通常在所需条件下工作。另一方面,故障数据很少见,在许多情况下,没有记录故障类别的数据。访问故障数据对于开发数据驱动的故障诊断工具至关重要,该工具可以提高操作的性能和安全性。为此,引入了基于条件生成对抗网络(CGAN)的新型算法。该算法对任何实际故障条件的正常和故障数据进行培训,从目标条件的正常数据中生成故障数据。所提出的方法在现实世界中的数据集上进行了验证,并为不同条件生成故障数据。实施了几种最先进的分类器和可视化模型,以评估合成数据的质量。结果证明了所提出的算法的功效。
translated by 谷歌翻译
本文提出了一种新的劣化和损坏识别程序(DIP)并应用于建筑模型。与这些类型的结构的应用相关的挑战与响应的强相关性有关,这在应对具有高噪声水平的真实环境振动时进一步复杂化。因此,利用低成本环境振动设计了DIP,以分析使用股票变换(ST)来产生谱图的加速响应。随后,ST输出成为建立的两系列卷积神经网络(CNNS)的输入,用于识别建筑模型的恶化和损坏。据我们所知,这是第一次通过高精度的ST和CNN组合在建筑模型中评估损坏和恶化。
translated by 谷歌翻译
大量的数据和创新算法使数据驱动的建模成为现代行业的流行技术。在各种数据驱动方法中,潜在变量模型(LVM)及其对应物占主要份额,并在许多工业建模领域中起着至关重要的作用。 LVM通常可以分为基于统计学习的经典LVM和基于神经网络的深层LVM(DLVM)。我们首先讨论经典LVM的定义,理论和应用,该定义和应用既是综合教程,又是对经典LVM的简短申请调查。然后,我们对当前主流DLVM进行了彻底的介绍,重点是其理论和模型体系结构,此后不久就提供了有关DLVM的工业应用的详细调查。上述两种类型的LVM具有明显的优势和缺点。具体而言,经典的LVM具有简洁的原理和良好的解释性,但是它们的模型能力无法解决复杂的任务。基于神经网络的DLVM具有足够的模型能力,可以在复杂的场景中实现令人满意的性能,但它以模型的解释性和效率为例。旨在结合美德并减轻这两种类型的LVM的缺点,并探索非神经网络的举止以建立深层模型,我们提出了一个新颖的概念,称为“轻量级Deep LVM(LDLVM)”。在提出了这个新想法之后,该文章首先阐述了LDLVM的动机和内涵,然后提供了两个新颖的LDLVM,并详尽地描述了其原理,建筑和优点。最后,讨论了前景和机会,包括重要的开放问题和可能的研究方向。
translated by 谷歌翻译
预后有助于实地系统或产品的寿命。量化该系统的当前健康状况使预后能够增强操作员的决策以保护系统的健康状况。由于(a)未知的身体关系和/(b)数据中的不规则性远远超出了问题的启动,因此很难为系统创建预后。传统上,三种不同的建模范例已被用来开发预后模型:基于物理学(PBM),数据驱动(DDM)和混合模型。最近,结合了基于PBM和DDM的方法并减轻其局限性的混合建模方法在预后域中获得了吸引力。在本文中,概述了基于模糊逻辑和生成对抗网络(GAN)的概念的组合概念的一种新型混合建模方法。基于Fuzzygan的方法将基于物理的模型嵌入模糊含义的聚集中。该技术将学习方法的输出限制为现实解决方案。轴承问题的结果表明,在模糊逻辑模型中添加基于物理的聚集的功效,以提高GAN对健康建模的能力并提供更准确的系统预后。
translated by 谷歌翻译
准确预测高海洋状态的滚动运动对于海洋车辆的可操作性,安全性和生存能力而言是重要的。本文介绍了一种新型的数据驱动方法,用于实现高海国船舶运动的多步骤预测。提出了一个名为ConvlSTMPNET的混合神经网络,以并行执行长期记忆(LSTM)和一维卷积神经网络(CNN),以从多维输入中提取时间依赖性和时空信息。采用KC作为研究对象,使用计算流体动力学方法的数值解决方案可用于在带有不同波动方向的Sea State 7中生成船舶运动数据。考虑到运动状态和波高度的时间史的影响,对特征空间的选择进行了深入的比较研究。比较结果表明,选择运动状态和波高作为多步预测的特征空间的优越性。此外,结果表明,在滚动运动的多步骤预测中,ConvlstMnet比LSTM和CNN方法更准确,从而验证了所提出的方法的效率。
translated by 谷歌翻译
随着机器学习的发展,数据驱动模型已广泛用于振动信号故障诊断。大多数数据驱动的机器学习算法都是基于设计良好设计的功能,但通常需要提取特征提取。在深度学习时代,特征提取和分类器学习同时进行,这将导致端到端的学习系统。本文探讨了两个关键因素,即特征提取和分类算法中的哪一个,对于生成学习系统期间,对于振动信号诊断的特定任务更为必要。讨论了来自振动信号的特征提取,分别基于众所周知的高斯模型和统计特征进行振动信号。选择了几种分类算法以通过实验验证特征提取和分类算法对预测性能的比较影响。
translated by 谷歌翻译
本文介绍了用于预测可能遭受不同自然失败的飞机发动机队列的剩余使用寿命(RUL)的数据驱动技术和方法。提出的解决方案基于两个深度卷积神经网络(DCNN),其两个级别堆叠。第一DCNN用于利用归一化原始数据作为输入来提取低维特征向量。第二个DCNN摄取了从前DCNN获取的载体列表并估计rul。使用重复的随机分配验证方法,通过贝叶斯优化进行模型选择。该拟议的方法在2021 PHM会议数据挑战的第三位排名。
translated by 谷歌翻译
The occurrence of vacuum arcs or radio frequency (rf) breakdowns is one of the most prevalent factors limiting the high-gradient performance of normal conducting rf cavities in particle accelerators. In this paper, we search for the existence of previously unrecognized features related to the incidence of rf breakdowns by applying a machine learning strategy to high-gradient cavity data from CERN's test stand for the Compact Linear Collider (CLIC). By interpreting the parameters of the learned models with explainable artificial intelligence (AI), we reverse-engineer physical properties for deriving fast, reliable, and simple rule-based models. Based on 6 months of historical data and dedicated experiments, our models show fractions of data with a high influence on the occurrence of breakdowns. Specifically, it is shown that the field emitted current following an initial breakdown is closely related to the probability of another breakdown occurring shortly thereafter. Results also indicate that the cavity pressure should be monitored with increased temporal resolution in future experiments, to further explore the vacuum activity associated with breakdowns.
translated by 谷歌翻译