Despite recent advances of AI research in many application-specific domains, we do not know how to build a human-level artificial intelligence (HLAI). We conjecture that learning from others' experience with the language is the essential characteristic that distinguishes human intelligence from the rest. Humans can update the action-value function with the verbal description as if they experience states, actions, and corresponding rewards sequences firsthand. In this paper, we present a classification of intelligence according to how individual agents learn and propose a definition and a test for HLAI. The main idea is that language acquisition without explicit rewards can be a sufficient test for HLAI.
translated by 谷歌翻译
Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.
translated by 谷歌翻译
最近围绕语言处理模型的复杂性的最新炒作使人们对机器获得了类似人类自然语言的指挥的乐观情绪。人工智能中自然语言理解的领域声称在这一领域取得了长足的进步,但是,在这方面和其他学科中使用“理解”的概念性清晰,使我们很难辨别我们实际上有多近的距离。目前的方法和剩余挑战的全面,跨学科的概述尚待进行。除了语言知识之外,这还需要考虑我们特定于物种的能力,以对,记忆,标签和传达我们(足够相似的)体现和位置经验。此外,测量实际约束需要严格分析当前模型的技术能力,以及对理论可能性和局限性的更深入的哲学反思。在本文中,我将所有这些观点(哲学,认知语言和技术)团结在一起,以揭开达到真实(人类般的)语言理解所涉及的挑战。通过解开当前方法固有的理论假设,我希望说明我们距离实现这一目标的实际程度,如果确实是目标。
translated by 谷歌翻译
在流行媒体中,人造代理商的意识出现与同时实现人类或超人水平智力的那些相同的代理之间通常存在联系。在这项工作中,我们探讨了意识和智力之间这种看似直观的联系的有效性和潜在应用。我们通过研究与三种当代意识功能理论相关的认知能力:全球工作空间理论(GWT),信息生成理论(IGT)和注意力模式理论(AST)。我们发现,这三种理论都将有意识的功能专门与人类领域将军智力的某些方面联系起来。有了这个见解,我们转向人工智能领域(AI),发现尽管远未证明一般智能,但许多最先进的深度学习方法已经开始纳入三个功能的关键方面理论。确定了这一趋势后,我们以人类心理时间旅行的激励例子来提出方式,其中三种理论中每种理论的见解都可以合并为一个单一的统一和可实施的模型。鉴于三种功能理论中的每一种都可以通过认知能力来实现这一可能,因此,具有精神时间旅行的人造代理不仅具有比当前方法更大的一般智力,而且还与我们当前对意识功能作用的理解更加一致在人类中,这使其成为AI研究的有希望的近期目标。
translated by 谷歌翻译
The neural implementation of operant conditioning with few trials is unclear. We propose a Hippocampus-Inspired Cognitive Architecture (HICA) as a neural mechanism for operant conditioning. HICA explains a learning mechanism in which agents can learn a new behavior policy in a few trials, as mammals do in operant conditioning experiments. HICA is composed of two different types of modules. One is a universal learning module type that represents a cortical column in the neocortex gray matter. The working principle is modeled as Modulated Heterarchical Prediction Memory (mHPM). In mHPM, each module learns to predict a succeeding input vector given the sequence of the input vectors from lower layers and the context vectors from higher layers. The prediction is fed into the lower layers as a context signal (top-down feedback signaling), and into the higher layers as an input signal (bottom-up feedforward signaling). Rewards modulate the learning rate in those modules to memorize meaningful sequences effectively. In mHPM, each module updates in a local and distributed way compared to conventional end-to-end learning with backpropagation of the single objective loss. This local structure enables the heterarchical network of modules. The second type is an innate, special-purpose module representing various organs of the brain's subcortical system. Modules modeling organs such as the amygdala, hippocampus, and reward center are pre-programmed to enable instinctive behaviors. The hippocampus plays the role of the simulator. It is an autoregressive prediction model of the top-most level signal with a loop structure of memory, while cortical columns are lower layers that provide detailed information to the simulation. The simulation becomes the basis for learning with few trials and the deliberate planning required for operant conditioning.
translated by 谷歌翻译
Curiosity for machine agents has been a focus of lively research activity. The study of human and animal curiosity, particularly specific curiosity, has unearthed several properties that would offer important benefits for machine learners, but that have not yet been well-explored in machine intelligence. In this work, we conduct a comprehensive, multidisciplinary survey of the field of animal and machine curiosity. As a principal contribution of this work, we use this survey as a foundation to introduce and define what we consider to be five of the most important properties of specific curiosity: 1) directedness towards inostensible referents, 2) cessation when satisfied, 3) voluntary exposure, 4) transience, and 5) coherent long-term learning. As a second main contribution of this work, we show how these properties may be implemented together in a proof-of-concept reinforcement learning agent: we demonstrate how the properties manifest in the behaviour of this agent in a simple non-episodic grid-world environment that includes curiosity-inducing locations and induced targets of curiosity. As we would hope, our example of a computational specific curiosity agent exhibits short-term directed behaviour while updating long-term preferences to adaptively seek out curiosity-inducing situations. This work, therefore, presents a landmark synthesis and translation of specific curiosity to the domain of machine learning and reinforcement learning and provides a novel view into how specific curiosity operates and in the future might be integrated into the behaviour of goal-seeking, decision-making computational agents in complex environments.
translated by 谷歌翻译
人工智能的象征主义,联系主义和行为主义方法在各种任务中取得了很多成功,而我们仍然没有对社区中达成足够共识的“智能”的明确定义(尽管有70多个不同的“版本”的“版本”定义)。智力的本质仍然处于黑暗状态。在这项工作中,我们不采用这三种传统方法中的任何一种,而是试图确定智力本质的某些基本方面,并构建一种数学模型来代表和潜在地重现这些基本方面。我们首先强调定义讨论范围和调查粒度的重要性。我们仔细比较了人工智能,并定性地展示了信息抽象过程,我们建议这是联系感知和认知的关键。然后,我们提出了“概念”的更广泛的概念,将自我模型的概念从世界模型中分离出来,并构建了一种称为世界自我模型(WSM)的新模型。我们展示了创建和连接概念的机制,以及WSM如何接收,处理和输出有关解决的问题的信息的流程。我们还考虑并讨论了所提出的理论框架的潜在计算机实施问题,最后我们提出了一个基于WSM的统一智能一般框架。
translated by 谷歌翻译
大型语言模型(LLMS)具有变革性。它们是预先训练的基础模型,可以通过微调来适应许多不同的自然语言任务,以前每个任务都需要单独的网络模型。这是接近人类语言的非凡多功能性的一步。 GPT-3和最近的LAMDA可以与人类进行对话,并在最少的启动之后与许多例子进行许多主题。但是,关于这些LLM是否了解他们在说什么或表现出智力迹象的反应。在与LLM的三次访谈中得出截然不同的结论中,这种较高的差异显示出来。发现了一种新的可能性,可以解释这种分歧。实际上,LLM中似乎是智慧的是反映面试官智力的镜子,这是一个显着的转折,可以被视为反向图灵测试。如果是这样,那么通过研究访谈,我们可能会更多地了解面试官的智力和信念,而不是LLM的智能。
translated by 谷歌翻译
建立可以探索开放式环境的自主机器,发现可能的互动,自主构建技能的曲目是人工智能的一般目标。发展方法争辩说,这只能通过可以生成,选择和学习解决自己问题的自主和本质上动机的学习代理人来实现。近年来,我们已经看到了发育方法的融合,特别是发展机器人,具有深度加强学习(RL)方法,形成了发展机器学习的新领域。在这个新域中,我们在这里审查了一组方法,其中深入RL算法训练,以解决自主获取的开放式曲目的发展机器人问题。本质上动机的目标条件RL算法训练代理商学习代表,产生和追求自己的目标。自我生成目标需要学习紧凑的目标编码以及它们的相关目标 - 成就函数,这导致与传统的RL算法相比,这导致了新的挑战,该算法设计用于使用外部奖励信号解决预定义的目标集。本文提出了在深度RL和发育方法的交叉口中进行了这些方法的类型,调查了最近的方法并讨论了未来的途径。
translated by 谷歌翻译
我们正在履行社会心理学和社会神经科学以及动态框架的经验结果可能是对更智能人工代理的发展的启发。我们特别争辩说,复杂的人类认知体系结构归功于其与其从事社会和文化学习的能力的大部分表现力。在第一部分,我们的目标是展示社会学习在智力的发展中发挥着关键作用。我们通过讨论社会和文化学习理论,并调查各种动物在别人学习的能力;我们还探讨了社会神经科学的调查结果,在社交互动和学习期间检查人类大脑。然后,我们讨论了三种拟议的研究线,该研究落在了社会神经之上,并且可以在复杂的环境中发展社会智能体现的特工。首先,认知建筑的神经科学理论,如全球工作空间理论和注意力模式理论,可以提高生物合理性,帮助我们了解我们如何弥合智力的个人和社会理论。其次,智能地发生在时间上,而不是随着时间的推移,这是通过动态提供的强大框架自然融入的。第三,已经证明了社会实施例,以提供虚拟代理与人类之间的社交互动,具有更复杂的一系列交流信号。为了得出结论,我们在多层机器人系统领域提供了一种新的视角,探讨了如何通过遵循上述三个轴来推进。
translated by 谷歌翻译
本文展示了单个机制如何通过直接从代理的原始传感器流流层构建层。这种机制,一般值函数(GVF)或“预测”,捕获高级,抽象知识,作为一组关于现有特征和知识的一组预测,其专门基于代理的低级感官和动作。因此,预测提供了将原始传感器数据组织成有用的抽象的表示 - 通过无限数量的层 - AI和认知科学的长寻求目标。本文的核心是一个详细的思想实验,提供了一个具体,逐步的正式说明,逐步的人工代理商如何从其原始的传感器体验中构建真实,有用的抽象知识。知识表示为关于代理人的观察到其行为后果的一组分层预测(预测)。该图示出了十二个独立的图层:最低的原始像素,触摸和力传感器以及少量动作;较高层次增加抽象,最终导致了对代理商世界的丰富知识,对应于门口,墙壁,房间和平面图。然后,我认为这种一般机制可以允许表示广泛的日常人类知识。
translated by 谷歌翻译
Many theories, based on neuroscientific and psychological empirical evidence and on computational concepts, have been elaborated to explain the emergence of consciousness in the central nervous system. These theories propose key fundamental mechanisms to explain consciousness, but they only partially connect such mechanisms to the possible functional and adaptive role of consciousness. Recently, some cognitive and neuroscientific models try to solve this gap by linking consciousness to various aspects of goal-directed behaviour, the pivotal cognitive process that allows mammals to flexibly act in challenging environments. Here we propose the Representation Internal-Manipulation (RIM) theory of consciousness, a theory that links the main elements of consciousness theories to components and functions of goal-directed behaviour, ascribing a central role for consciousness to the goal-directed manipulation of internal representations. This manipulation relies on four specific computational operations to perform the flexible internal adaptation of all key elements of goal-directed computation, from the representations of objects to those of goals, actions, and plans. Finally, we propose the concept of `manipulation agency' relating the sense of agency to the internal manipulation of representations. This allows us to propose that the subjective experience of consciousness is associated to the human capacity to generate and control a simulated internal reality that is vividly perceived and felt through the same perceptual and emotional mechanisms used to tackle the external world.
translated by 谷歌翻译
Researchers across cognitive, neuro-, and computer sciences increasingly reference human-like artificial intelligence and neuroAI. However, the scope and use of the terms are often inconsistent. Contributed research ranges widely from mimicking behaviour, to testing machine learning methods as neurally plausible hypotheses at the cellular or functional levels, or solving engineering problems. However, it cannot be assumed nor expected that progress on one of these three goals will automatically translate to progress in others. Here a simple rubric is proposed to clarify the scope of individual contributions, grounded in their commitments to human-like behaviour, neural plausibility, or benchmark/engineering goals. This is clarified using examples of weak and strong neuroAI and human-like agents, and discussing the generative, corroborate, and corrective ways in which the three dimensions interact with one another. The author maintains that future progress in artificial intelligence will need strong interactions across the disciplines, with iterative feedback loops and meticulous validity tests, leading to both known and yet-unknown advances that may span decades to come.
translated by 谷歌翻译
We present a retrospective on the state of Embodied AI research. Our analysis focuses on 13 challenges presented at the Embodied AI Workshop at CVPR. These challenges are grouped into three themes: (1) visual navigation, (2) rearrangement, and (3) embodied vision-and-language. We discuss the dominant datasets within each theme, evaluation metrics for the challenges, and the performance of state-of-the-art models. We highlight commonalities between top approaches to the challenges and identify potential future directions for Embodied AI research.
translated by 谷歌翻译
The concept of intelligent system has emerged in information technology as a type of system derived from successful applications of artificial intelligence. The goal of this paper is to give a general description of an intelligent system, which integrates previous approaches and takes into account recent advances in artificial intelligence. The paper describes an intelligent system in a generic way, identifying its main properties and functional components. The presented description follows a pragmatic approach to be used in an engineering context as a general framework to analyze and build intelligent systems. Its generality and its use is illustrated with real-world system examples and related with artificial intelligence methods.
translated by 谷歌翻译
人工智能(AI)的价值分配问题询问我们如何确保人造系统的“价值”(即,客观函数)与人类的价值一致。在本文中,我认为语言交流(自然语言)是稳健价值对齐的必要条件。我讨论了这一主张的真相对试图确保AI系统价值一致的研究计划所带来的后果;或者,更谨慎地设计强大的有益或道德人造代理。
translated by 谷歌翻译
最近的自主代理和机器人的应用,如自动驾驶汽车,情景的培训师,勘探机器人和服务机器人带来了关注与当前生成人工智能(AI)系统相关的至关重要的信任相关挑战。尽管取得了巨大的成功,基于连接主义深度学习神经网络方法的神经网络方法缺乏解释他们对他人的决策和行动的能力。没有符号解释能力,它们是黑色盒子,这使得他们的决定或行动不透明,这使得难以信任它们在安全关键的应用中。最近对AI系统解释性的立场目睹了可解释的人工智能(XAI)的几种方法;然而,大多数研究都专注于应用于计算科学中的数据驱动的XAI系统。解决越来越普遍的目标驱动器和机器人的研究仍然缺失。本文评论了可解释的目标驱动智能代理和机器人的方法,重点是解释和沟通代理人感知功能的技术(示例,感官和愿景)和认知推理(例如,信仰,欲望,意图,计划和目标)循环中的人类。审查强调了强调透明度,可辨与和持续学习以获得解释性的关键策略。最后,本文提出了解释性的要求,并提出了用于实现有效目标驱动可解释的代理和机器人的路线图。
translated by 谷歌翻译
建立能够参与与人类社会互动的自治代理是AI的主要挑战之一。在深度加强学习(DRL)领域内,这一目标激励了多种作品上体现语言使用。然而,目前的方法在非常简化和非多样化的社交场合中关注语言作为通信工具:语言的“自然”减少到高词汇大小和变异性的概念。在本文中,我们认为针对人类级别的AI需要更广泛的关键社交技能:1)语言在复杂和可变的社会环境中使用; 2)超越语言,在不断发展的社会世界内的多模式设置中的复杂体现通信。我们解释了认知科学的概念如何帮助AI向人类智力绘制路线图,重点关注其社会方面。作为第一步,我们建议将目前的研究扩大到更广泛的核心社交技能。为此,我们展示了使用其他(脚本)社会代理商的多个网格世界环境来评估DRL代理商社交技能的基准。然后,我们研究了最近的Sota DRL方法的限制,当时在Sowisai上进行测试并讨论熟练社会代理商的重要下一步。视频和代码可在https://sites.google.com/view/socialai找到。
translated by 谷歌翻译
语言基础的挑战是通过在现实世界中的引用中充分理解自然语言。尽管可以使用AI技术,但此类技术对人类机器人团队的广泛采用和有效性依赖于用户信任。这项调查提供了有关语言基础的新兴信任领域的三项贡献,包括a)根据AI技术,数据集和用户界面的语言基础研究概述;b)与语言基础有关的六个假设信任因素,这些因素在人机清洁团队经验中进行了经验测试;c)对语言基础的信任的未来研究指示。
translated by 谷歌翻译
This white paper lays out a vision of research and development in the field of artificial intelligence for the next decade (and beyond). Its denouement is a cyber-physical ecosystem of natural and synthetic sense-making, in which humans are integral participants$\unicode{x2014}$what we call ''shared intelligence''. This vision is premised on active inference, a formulation of adaptive behavior that can be read as a physics of intelligence, and which inherits from the physics of self-organization. In this context, we understand intelligence as the capacity to accumulate evidence for a generative model of one's sensed world$\unicode{x2014}$also known as self-evidencing. Formally, this corresponds to maximizing (Bayesian) model evidence, via belief updating over several scales: i.e., inference, learning, and model selection. Operationally, this self-evidencing can be realized via (variational) message passing or belief propagation on a factor graph. Crucially, active inference foregrounds an existential imperative of intelligent systems; namely, curiosity or the resolution of uncertainty. This same imperative underwrites belief sharing in ensembles of agents, in which certain aspects (i.e., factors) of each agent's generative world model provide a common ground or frame of reference. Active inference plays a foundational role in this ecology of belief sharing$\unicode{x2014}$leading to a formal account of collective intelligence that rests on shared narratives and goals. We also consider the kinds of communication protocols that must be developed to enable such an ecosystem of intelligences and motivate the development of a shared hyper-spatial modeling language and transaction protocol, as a first$\unicode{x2014}$and key$\unicode{x2014}$step towards such an ecology.
translated by 谷歌翻译