AASM准则是为了有一种常用的方法,旨在标准化睡眠评分程序的数十年努力的结果。该指南涵盖了从技术/数字规格(例如,推荐的EEG推导)到相应的详细睡眠评分规则到年龄的几个方面。在睡眠评分自动化的背景下,与许多其他技术相比,深度学习表现出更好的性能。通常,临床专业知识和官方准则对于支持自动睡眠评分算法在解决任务时至关重要。在本文中,我们表明,基于深度学习的睡眠评分算法可能不需要充分利用临床知识或严格遵循AASM准则。具体而言,我们证明了U-Sleep是一种最先进的睡眠评分算法,即使使用临床非申请或非规定派生,也可以解决得分任务,即使无需利用有关有关的信息,也无需利用有关有关的信息。受试者的年代年龄。我们最终加强了一个众所周知的发现,即使用来自多个数据中心的数据始终导致与单个队列上的培训相比,可以使性能更好。确实,我们表明,即使增加了单个数据队列的大小和异质性,后者仍然有效。在我们的所有实验中,我们使用了来自13个不同临床研究的28528多个多摄影研究研究。
translated by 谷歌翻译
研究目标:评分多个词法中的绩效差异是一个众所周知的问题。大多数现有的自动睡眠评分系统都是使用单个得分手注释的标签培训的,该标签将主观评估转移到模型中。当有两个或多个得分手的注释可用时,评分模型通常会在得分手共识上训练。平均得分手的主观性被转移到模型中,失去了有关不同得分子之间内部变异性的信息。在这项研究中,我们旨在将不同医生的多重知识插入培训程序中。目标是优化模型培训,利用可以从一组得分手共识中提取的全部信息。方法:我们在三个不同的多得分数据库上训练两个基于深度学习的模型。我们将标签平滑技术与软传感器(LSSC)分布一起利用,以在模型的训练过程中插入多重知识。我们介绍了平均余弦相似性度量(ACS),以量化模型与LSSC产生的催眠密度毛电和得分手共识产生的催眠密度图之间的相似性。结果:当我们使用LSSC训练模型时,模型的性能会改善所有数据库。我们发现,通过LSSC训练的模型和共识产生的催眠仪型的催眠刻画之间的ACS增加(高达6.4%)。结论:我们的方法绝对使模型能够更好地适应得分手的共识。未来的工作将集中于对不同评分体系结构的进一步调查。
translated by 谷歌翻译
We present a Machine Learning (ML) study case to illustrate the challenges of clinical translation for a real-time AI-empowered echocardiography system with data of ICU patients in LMICs. Such ML case study includes data preparation, curation and labelling from 2D Ultrasound videos of 31 ICU patients in LMICs and model selection, validation and deployment of three thinner neural networks to classify apical four-chamber view. Results of the ML heuristics showed the promising implementation, validation and application of thinner networks to classify 4CV with limited datasets. We conclude this work mentioning the need for (a) datasets to improve diversity of demographics, diseases, and (b) the need of further investigations of thinner models to be run and implemented in low-cost hardware to be clinically translated in the ICU in LMICs. The code and other resources to reproduce this work are available at https://github.com/vital-ultrasound/ai-assisted-echocardiography-for-low-resource-countries.
translated by 谷歌翻译
Early on during a pandemic, vaccine availability is limited, requiring prioritisation of different population groups. Evaluating vaccine allocation is therefore a crucial element of pandemics response. In the present work, we develop a model to retrospectively evaluate age-dependent counterfactual vaccine allocation strategies against the COVID-19 pandemic. To estimate the effect of allocation on the expected severe-case incidence, we employ a simulation-assisted causal modelling approach which combines a compartmental infection-dynamics simulation, a coarse-grained, data-driven causal model and literature estimates for immunity waning. We compare Israel's implemented vaccine allocation strategy in 2021 to counterfactual strategies such as no prioritisation, prioritisation of younger age groups or a strict risk-ranked approach; we find that Israel's implemented strategy was indeed highly effective. We also study the marginal impact of increasing vaccine uptake for a given age group and find that increasing vaccinations in the elderly is most effective at preventing severe cases, whereas additional vaccinations for middle-aged groups reduce infections most effectively. Due to its modular structure, our model can easily be adapted to study future pandemics. We demonstrate this flexibility by investigating vaccine allocation strategies for a pandemic with characteristics of the Spanish Flu. Our approach thus helps evaluate vaccination strategies under the complex interplay of core epidemic factors, including age-dependent risk profiles, immunity waning, vaccine availability and spreading rates.
translated by 谷歌翻译
One of today's goals for industrial robot systems is to allow fast and easy provisioning for new tasks. Skill-based systems that use planning and knowledge representation have long been one possible answer to this. However, especially with contact-rich robot tasks that need careful parameter settings, such reasoning techniques can fall short if the required knowledge not adequately modeled. We show an approach that provides a combination of task-level planning and reasoning with targeted learning of skill parameters for a task at hand. Starting from a task goal formulated in PDDL, the learnable parameters in the plan are identified and an operator can choose reward functions and parameters for the learning process. A tight integration with a knowledge framework allows to form a prior for learning and the usage of multi-objective Bayesian optimization eases to balance aspects such as safety and task performance that can often affect each other. We demonstrate the efficacy and versatility of our approach by learning skill parameters for two different contact-rich tasks and show their successful execution on a real 7-DOF KUKA-iiwa.
translated by 谷歌翻译
Objective: Thigh muscle group segmentation is important for assessment of muscle anatomy, metabolic disease and aging. Many efforts have been put into quantifying muscle tissues with magnetic resonance (MR) imaging including manual annotation of individual muscles. However, leveraging publicly available annotations in MR images to achieve muscle group segmentation on single slice computed tomography (CT) thigh images is challenging. Method: We propose an unsupervised domain adaptation pipeline with self-training to transfer labels from 3D MR to single CT slice. First, we transform the image appearance from MR to CT with CycleGAN and feed the synthesized CT images to a segmenter simultaneously. Single CT slices are divided into hard and easy cohorts based on the entropy of pseudo labels inferenced by the segmenter. After refining easy cohort pseudo labels based on anatomical assumption, self-training with easy and hard splits is applied to fine tune the segmenter. Results: On 152 withheld single CT thigh images, the proposed pipeline achieved a mean Dice of 0.888(0.041) across all muscle groups including sartorius, hamstrings, quadriceps femoris and gracilis. muscles Conclusion: To our best knowledge, this is the first pipeline to achieve thigh imaging domain adaptation from MR to CT. The proposed pipeline is effective and robust in extracting muscle groups on 2D single slice CT thigh images.The container is available for public use at https://github.com/MASILab/DA_CT_muscle_seg
translated by 谷歌翻译
In this paper, we propose the first-ever real benchmark thought for evaluating Neural Radiance Fields (NeRFs) and, in general, Neural Rendering (NR) frameworks. We design and implement an effective pipeline for scanning real objects in quantity and effortlessly. Our scan station is built with less than 500$ hardware budget and can collect roughly 4000 images of a scanned object in just 5 minutes. Such a platform is used to build ScanNeRF, a dataset characterized by several train/val/test splits aimed at benchmarking the performance of modern NeRF methods under different conditions. Accordingly, we evaluate three cutting-edge NeRF variants on it to highlight their strengths and weaknesses. The dataset is available on our project page, together with an online benchmark to foster the development of better and better NeRFs.
translated by 谷歌翻译
Recent approaches to drape garments quickly over arbitrary human bodies leverage self-supervision to eliminate the need for large training sets. However, they are designed to train one network per clothing item, which severely limits their generalization abilities. In our work, we rely on self-supervision to train a single network to drape multiple garments. This is achieved by predicting a 3D deformation field conditioned on the latent codes of a generative network, which models garments as unsigned distance fields. Our pipeline can generate and drape previously unseen garments of any topology, whose shape can be edited by manipulating their latent codes. Being fully differentiable, our formulation makes it possible to recover accurate 3D models of garments from partial observations -- images or 3D scans -- via gradient descent. Our code will be made publicly available.
translated by 谷歌翻译
This paper proposes a new algorithm for an automatic variable selection procedure in High Dimensional Graphical Models. The algorithm selects the relevant variables for the node of interest on the basis of mutual information. Several contributions in literature have investigated the use of mutual information in selecting the appropriate number of relevant features in a large data-set, but most of them have focused on binary outcomes or required high computational effort. The algorithm here proposed overcomes these drawbacks as it is an extension of Chow and Liu's algorithm. Once, the probabilistic structure of a High Dimensional Graphical Model is determined via the said algorithm, the best path-step, including variables with the most explanatory/predictive power for a variable of interest, is determined via the computation of the entropy coefficient of determination. The latter, being based on the notion of (symmetric) Kullback-Leibler divergence, turns out to be closely connected to the mutual information of the involved variables. The application of the algorithm to a wide range of real-word and publicly data-sets has highlighted its potential and greater effectiveness compared to alternative extant methods.
translated by 谷歌翻译
Word embeddings play a significant role in today's Natural Language Processing tasks and applications. While pre-trained models may be directly employed and integrated into existing pipelines, they are often fine-tuned to better fit with specific languages or domains. In this paper, we attempt to improve available embeddings in the uncovered niche of the Italian medical domain through the combination of Contrastive Learning (CL) and Knowledge Graph Embedding (KGE). The main objective is to improve the accuracy of semantic similarity between medical terms, which is also used as an evaluation task. Since the Italian language lacks medical texts and controlled vocabularies, we have developed a specific solution by combining preexisting CL methods (multi-similarity loss, contextualization, dynamic sampling) and the integration of KGEs, creating a new variant of the loss. Although without having outperformed the state-of-the-art, represented by multilingual models, the obtained results are encouraging, providing a significant leap in performance compared to the starting model, while using a significantly lower amount of data.
translated by 谷歌翻译