Objective: Thigh muscle group segmentation is important for assessment of muscle anatomy, metabolic disease and aging. Many efforts have been put into quantifying muscle tissues with magnetic resonance (MR) imaging including manual annotation of individual muscles. However, leveraging publicly available annotations in MR images to achieve muscle group segmentation on single slice computed tomography (CT) thigh images is challenging. Method: We propose an unsupervised domain adaptation pipeline with self-training to transfer labels from 3D MR to single CT slice. First, we transform the image appearance from MR to CT with CycleGAN and feed the synthesized CT images to a segmenter simultaneously. Single CT slices are divided into hard and easy cohorts based on the entropy of pseudo labels inferenced by the segmenter. After refining easy cohort pseudo labels based on anatomical assumption, self-training with easy and hard splits is applied to fine tune the segmenter. Results: On 152 withheld single CT thigh images, the proposed pipeline achieved a mean Dice of 0.888(0.041) across all muscle groups including sartorius, hamstrings, quadriceps femoris and gracilis. muscles Conclusion: To our best knowledge, this is the first pipeline to achieve thigh imaging domain adaptation from MR to CT. The proposed pipeline is effective and robust in extracting muscle groups on 2D single slice CT thigh images.The container is available for public use at https://github.com/MASILab/DA_CT_muscle_seg
translated by 谷歌翻译
While deep learning methods hitherto have achieved considerable success in medical image segmentation, they are still hampered by two limitations: (i) reliance on large-scale well-labeled datasets, which are difficult to curate due to the expert-driven and time-consuming nature of pixel-level annotations in clinical practices, and (ii) failure to generalize from one domain to another, especially when the target domain is a different modality with severe domain shifts. Recent unsupervised domain adaptation~(UDA) techniques leverage abundant labeled source data together with unlabeled target data to reduce the domain gap, but these methods degrade significantly with limited source annotations. In this study, we address this underexplored UDA problem, investigating a challenging but valuable realistic scenario, where the source domain not only exhibits domain shift~w.r.t. the target domain but also suffers from label scarcity. In this regard, we propose a novel and generic framework called ``Label-Efficient Unsupervised Domain Adaptation"~(LE-UDA). In LE-UDA, we construct self-ensembling consistency for knowledge transfer between both domains, as well as a self-ensembling adversarial learning module to achieve better feature alignment for UDA. To assess the effectiveness of our method, we conduct extensive experiments on two different tasks for cross-modality segmentation between MRI and CT images. Experimental results demonstrate that the proposed LE-UDA can efficiently leverage limited source labels to improve cross-domain segmentation performance, outperforming state-of-the-art UDA approaches in the literature. Code is available at: https://github.com/jacobzhaoziyuan/LE-UDA.
translated by 谷歌翻译
域适应(DA)最近在医学影像社区提出了强烈的兴趣。虽然已经提出了大量DA技术进行了用于图像分割,但大多数这些技术已经在私有数据集或小公共可用数据集上验证。此外,这些数据集主要解决了单级问题。为了解决这些限制,与第24届医学图像计算和计算机辅助干预(Miccai 2021)结合第24届国际会议组织交叉模态域适应(Crossmoda)挑战。 Crossmoda是无监督跨型号DA的第一个大型和多级基准。挑战的目标是分割参与前庭施瓦新瘤(VS)的后续和治疗规划的两个关键脑结构:VS和Cochleas。目前,使用对比度增强的T1(CET1)MRI进行VS患者的诊断和监测。然而,使用诸如高分辨率T2(HRT2)MRI的非对比度序列越来越感兴趣。因此,我们创建了一个无人监督的跨模型分段基准。训练集提供注释CET1(n = 105)和未配对的非注释的HRT2(n = 105)。目的是在测试集中提供的HRT2上自动对HRT2进行单侧VS和双侧耳蜗分割(n = 137)。共有16支球队提交了评估阶段的算法。顶级履行团队达成的表现水平非常高(最佳中位数骰子 - vs:88.4%; Cochleas:85.7%)并接近完全监督(中位数骰子 - vs:92.5%;耳蜗:87.7%)。所有顶级执行方法都使用图像到图像转换方法将源域图像转换为伪目标域图像。然后使用这些生成的图像和为源图像提供的手动注释进行培训分割网络。
translated by 谷歌翻译
实现域适应是有价值的,以将学习知识从标记为CT数据集传输到腹部多器官分段的目标未标记的MR DataSet。同时,非常希望避免目标数据集的高注重成本并保护源数据集的隐私。因此,我们提出了一种有效的无核心无监督域适应方法,用于跨型号腹部多器官分段而不访问源数据集。所提出的框架的过程包括两个阶段。在第一阶段,特征映射统计损失用于对准顶部分段网络中的源和目标特征的分布,并使用熵最小化损耗来鼓励高席位细分。从顶部分段网络输出的伪标签用于指导样式补偿网络生成类似源图像。从中间分割网络输出的伪标签用于监督所需模型的学习(底部分段网络)。在第二阶段,循环学习和像素自适应掩模细化用于进一步提高所需模型的性能。通过这种方法,我们在肝脏,肾脏,左肾肾脏和脾脏的分割中实现了令人满意的性能,骰子相似系数分别为0.884,0.891,0.864和0.911。此外,当存在目标注释数据时,所提出的方法可以很容易地扩展到情况。该性能在平均骰子相似度系数的0.888至0.922增加到0.888至0.922,靠近监督学习(0.929),只有一个标记的MR卷。
translated by 谷歌翻译
这项工作提出了一个新颖的框架CISFA(对比图像合成和自我监督的特征适应),该框架建立在图像域翻译和无监督的特征适应性上,以进行跨模式生物医学图像分割。与现有作品不同,我们使用单方面的生成模型,并在输入图像的采样贴片和相应的合成图像之间添加加权贴片对比度损失,该图像用作形状约束。此外,我们注意到生成的图像和输入图像共享相似的结构信息,但具有不同的方式。因此,我们在生成的图像和输入图像上强制实施对比损失,以训练分割模型的编码器,以最大程度地减少学到的嵌入空间中成对图像之间的差异。与依靠对抗性学习进行特征适应的现有作品相比,这种方法使编码器能够以更明确的方式学习独立于域的功能。我们对包含腹腔和全心的CT和MRI图像的分割任务进行了广泛评估。实验结果表明,所提出的框架不仅输出了较小的器官形状变形的合成图像,而且还超过了最先进的域适应方法的较大边缘。
translated by 谷歌翻译
卷积神经网络(CNN)已经实现了医学图像细分的最先进性能,但需要大量的手动注释进行培训。半监督学习(SSL)方法有望减少注释的要求,但是当数据集大小和注释图像的数量较小时,它们的性能仍然受到限制。利用具有类似解剖结构的现有注释数据集来协助培训,这有可能改善模型的性能。然而,由于目标结构的外观不同甚至成像方式,跨解剖结构域的转移进一步挑战。为了解决这个问题,我们提出了跨解剖结构域适应(CS-CADA)的对比度半监督学习,该学习适应一个模型以在目标结构域中细分相似的结构,这仅需要通过利用一组现有现有的现有的目标域中的限制注释源域中相似结构的注释图像。我们使用特定领域的批归归量表(DSBN)来单独地标准化两个解剖域的特征图,并提出跨域对比度学习策略,以鼓励提取域不变特征。它们被整合到一个自我兼容的均值老师(SE-MT)框架中,以利用具有预测一致性约束的未标记的目标域图像。广泛的实验表明,我们的CS-CADA能够解决具有挑战性的跨解剖结构域移位问题,从而在视网膜血管图像和心脏MR图像的帮助下,在X射线图像中准确分割冠状动脉,并借助底底图像,分别仅给定目标域中的少量注释。
translated by 谷歌翻译
无监督的域适应性(UDA)是解决一个问题的关键技术之一,很难获得监督学习所需的地面真相标签。通常,UDA假设在培训过程中可以使用来自源和目标域中的所有样本。但是,在涉及数据隐私问题的应用下,这不是现实的假设。为了克服这一限制,最近提出了无源数据的UDA,即无源无监督的域适应性(SFUDA)。在这里,我们提出了一种用于医疗图像分割的SFUDA方法。除了在UDA中通常使用的熵最小化方法外,我们还引入了一个损失函数,以避免目标域中的特征规范和在保留目标器官的形状约束之前。我们使用数据集进行实验,包括多种类型的源目标域组合,以显示我们方法的多功能性和鲁棒性。我们确认我们的方法优于所有数据集中的最先进。
translated by 谷歌翻译
精确的心脏计算,多种式图像的分析和建模对于心脏病的诊断和治疗是重要的。晚期钆增强磁共振成像(LGE MRI)是一种有希望的技术,可视化和量化心肌梗塞(MI)和心房疤痕。由于LGE MRI的低图像质量和复杂的增强图案,MI和心房疤痕的自动化量可能是具有挑战性的。此外,与带金标准标签的其他序列LGE MRIS相比特别有限,这表示用于开发用于自动分割和LGE MRIS定量的新型算法的另一个障碍。本章旨在总结最先进的基于深度学习的多模态心脏图像分析的先进贡献。首先,我们向基于多序心脏MRI的心肌和病理分割介绍了两个基准工作。其次,提出了两种新的左心房瘢痕分割和从LGE MRI定量的新型框架。第三,我们为跨型心脏图像分割提出了三种无监督的域适应技术。
translated by 谷歌翻译
Segmenting the fine structure of the mouse brain on magnetic resonance (MR) images is critical for delineating morphological regions, analyzing brain function, and understanding their relationships. Compared to a single MRI modality, multimodal MRI data provide complementary tissue features that can be exploited by deep learning models, resulting in better segmentation results. However, multimodal mouse brain MRI data is often lacking, making automatic segmentation of mouse brain fine structure a very challenging task. To address this issue, it is necessary to fuse multimodal MRI data to produce distinguished contrasts in different brain structures. Hence, we propose a novel disentangled and contrastive GAN-based framework, named MouseGAN++, to synthesize multiple MR modalities from single ones in a structure-preserving manner, thus improving the segmentation performance by imputing missing modalities and multi-modality fusion. Our results demonstrate that the translation performance of our method outperforms the state-of-the-art methods. Using the subsequently learned modality-invariant information as well as the modality-translated images, MouseGAN++ can segment fine brain structures with averaged dice coefficients of 90.0% (T2w) and 87.9% (T1w), respectively, achieving around +10% performance improvement compared to the state-of-the-art algorithms. Our results demonstrate that MouseGAN++, as a simultaneous image synthesis and segmentation method, can be used to fuse cross-modality information in an unpaired manner and yield more robust performance in the absence of multimodal data. We release our method as a mouse brain structural segmentation tool for free academic usage at https://github.com/yu02019.
translated by 谷歌翻译
脾脏是钝性腹腔创伤中最常见的固体器官之一。来自多相CT的自动分割系统的开发用于脾血管损伤的脾血管损伤,可以增强严重程度,以改善临床决策支持和结果预测。然而,由于以下原因,脾血管损伤的准确细分是具有挑战性的:1)脾血管损伤可以是高度变体的形状,质地,尺寸和整体外观; 2)数据采集是一种复杂和昂贵的程序,需要来自数据科学家和放射科学家的密集努力,这使得大规模的注释数据集难以获取。鉴于这些挑战,我们在此设计了一种用于多相脾血管损伤分割的新框架,尤其是数据有限。一方面,我们建议利用外部数据作为矿井伪脾面罩作为空间关注,被称为外部关注,用于引导脾血管损伤的分割。另一方面,我们开发一个合成相位增强模块,它在生成的对抗网络上构建,通过完全利用不同阶段之间的关系来填充内部数据。通过联合实施外部注意力和填充内部数据表示,我们提出的方法优于其他竞争方法,并且在平均DSC方面大大改善了超过7%的流行Deeplab-V3 +基线,这证实了其有效性。
translated by 谷歌翻译
无监督的交叉模式医学图像适应旨在减轻不同成像方式之间的严重域间隙,而无需使用目标域标签。该活动的关键依赖于对齐源和目标域的分布。一种常见的尝试是强制两个域之间的全局对齐,但是,这忽略了致命的局部不平衡域间隙问题,即,一些具有较大域间隙的局部特征很难转移。最近,某些方法进行一致性,重点是地方区域,以提高模型学习的效率。尽管此操作可能会导致上下文中关键信息的缺陷。为了应对这一限制,我们提出了一种新的策略,以减轻医学图像的特征,即全球本地联盟的一致性,以减轻域间隙不平衡。具体而言,功能 - 触发样式转移模块首先合成类似目标的源包含图像,以减少全局域间隙。然后,集成了本地功能掩码,以通过优先考虑具有较大域间隙的判别特征来减少本地特征的“间隙”。全球和局部对齐的这种组合可以精确地将关键区域定位在分割目标中,同时保持整体语义一致性。我们进行了一系列具有两个跨模式适应任务的实验,i,e。心脏子结构和腹部多器官分割。实验结果表明,我们的方法在这两个任务中都达到了最新的性能。
translated by 谷歌翻译
形状信息在医学图像中分割器官方面是强大而有价值的先验。但是,当前大多数基于深度学习的分割算法尚未考虑形状信息,这可能导致对纹理的偏见。我们旨在明确地对形状进行建模并使用它来帮助医疗图像分割。先前的方法提出了基于变异的自动编码器(VAE)模型,以了解特定器官的形状分布,并通过将其拟合到学习的形状分布中来自动评估分割预测的质量。我们旨在将VAE纳入当前的分割管道中。具体而言,我们提出了一种基于伪损失和在教师学习范式下的VAE重建损失的新的无监督域适应管道。两种损失都是同时优化的,作为回报,提高了分割任务性能。对三个公共胰腺细分数据集以及两个内部胰腺细分数据集进行了广泛的实验,显示了一致的改进,骰子分数中至少有2.8分的增益,这表明了我们方法在挑战无监督的域适应性方案中对医学图像分割的有效性。我们希望这项工作能够在医学成像中提高形状分析和几何学习。
translated by 谷歌翻译
The existence of completely aligned and paired multi-modal neuroimaging data has proved its effectiveness in diagnosis of brain diseases. However, collecting the full set of well-aligned and paired data is expensive or even impractical, since the practical difficulties may include high cost, long time acquisition, image corruption, and privacy issues. A realistic solution is to explore either an unsupervised learning or a semi-supervised learning to synthesize the absent neuroimaging data. In this paper, we are the first one to comprehensively approach cross-modality neuroimage synthesis task from different perspectives, which include the level of the supervision (especially for weakly-supervised and unsupervised), loss function, evaluation metrics, the range of modality synthesis, datasets (aligned, private and public) and the synthesis-based downstream tasks. To begin with, we highlight several opening challenges for cross-modality neuroimage sysnthesis. Then we summarize the architecture of cross-modality synthesis under various of supervision level. In addition, we provide in-depth analysis of how cross-modality neuroimage synthesis can improve the performance of different downstream tasks. Finally, we re-evaluate the open challenges and point out the future directions for the remaining challenges. All resources are available at https://github.com/M-3LAB/awesome-multimodal-brain-image-systhesis
translated by 谷歌翻译
创伤性脑损伤(TBI)患者的脑网络分析对于其意识水平评估和预后评估至关重要,这需要分割某些意识相关的大脑区域。但是,由于很难收集TBI患者的手动注释的MR扫描,因此很难构建TBI分割模型。数据增强技术可用于缓解数据稀缺问题。但是,常规数据增强策略(例如空间和强度转化)无法模仿创伤性大脑中的变形和病变,这限制了后续分割任务的性能。为了解决这些问题,我们提出了一种名为TBIGA的新型医学图像授课模型,以通过配对的脑标签图合成TBI MR扫描。我们的TBIGAN方法的主要优势在于,它可以同时生成TBI图像和相应的标签映射,这在以前的医学图像的先前涂上方法中尚未实现。我们首先按照粗到细节的方式在边缘信息的指导下生成成分的图像,然后将合成强度图像用作标签上填充的先验。此外,我们引入了基于注册的模板增强管道,以增加合成图像对的多样性并增强数据增强能力。实验结果表明,提出的TBIGAN方法可以产生具有高质量和有效标签图的足够合成的TBI图像,这可以大大改善与替代方案相比的2D和3D创伤性脑部分割性能。
translated by 谷歌翻译
尽管数据增强和转移学习有所进步,但卷积神经网络(CNNS)难以推广到看不见的域。在分割大脑扫描时,CNN对分辨率和对比度的变化非常敏感:即使在相同的MRI模式内,则性能可能会跨数据集减少。在这里,我们介绍了Synthseg,第一个分段CNN无关紧要对比和分辨率。 Synthseg培训,用从分段上的生成模型采样的合成数据培训。至关重要,我们采用域随机化策略,我们完全随机开启了合成培训数据的对比度和解决。因此,Synthseg可以在没有再培训或微调的情况下对任何目标结构域进行真实扫描,这是首次分析大量的异构临床数据。因为Synthseg仅需要进行培训(无图像),所以它可以从通过不同群体的对象(例如,老化和患病)的自动化方法获得的标签中学习,从而实现广泛的形态变异性的鲁棒性。我们展示了Synthseg在六种方式的5,300扫描和十项决议中,与监督CNN,最先进的域适应和贝叶斯分割相比,它表现出无与伦比的泛化。最后,我们通过将其施加到心脏MRI和CT分割来证明SyntheeG的恒定性。
translated by 谷歌翻译
基于深度学习的疾病检测和分割算法承诺提高许多临床过程。然而,由于数据隐私,法律障碍和非统一数据采集协议,此类算法需要大量的注释训练数据,通常在医学环境中不可用。具有注释病理学的合成数据库可以提供所需的培训数据量。我们展示了缺血性卒中的例子,即利用基于深度学习的增强的病变分割的改善是可行的。为此,我们训练不同的图像到图像转换模型,以合成大脑体积的磁共振图像,并且没有来自语义分割图的中风病变。此外,我们培养一种生成的对抗性网络来产生合成病变面具。随后,我们组合这两个组件来构建大型合成描边图像数据库。使用U-NET评估各种模型的性能,该U-NET在临床测试集上培训以进行段中风病变。我们向最佳性能报告$ \ mathbf {72.8} $%[$ \ mathbf {70.8 \ pm1.0} $%]的骰子分数,这胜过了单独临床图像培训的模型培训$ \ mathbf { 67.3} $%[$ \ mathbf {63.2 \ pm1.9} $%],并且接近人类互相互联网骰子评分$ \ mathbf {76.9} $%。此外,我们表明,对于仅为10或50个临床案例的小型数据库,与使用不使用合成数据的设置相比,合成数据增强产生了显着的改进。据我们所知,这提出了基于图像到图像翻译的合成数据增强的第一个比较分析,并将第一应用于缺血性卒中。
translated by 谷歌翻译
光学相干断层扫描(OCT)是一种非侵入性技术,可在微米分辨率中捕获视网膜的横截面区域。它已被广泛用作辅助成像参考,以检测与眼睛有关的病理学并预测疾病特征的纵向进展。视网膜层分割是至关重要的特征提取技术之一,其中视网膜层厚度的变化和由于液体的存在而引起的视网膜层变形高度相关,与多种流行性眼部疾病(如糖尿病性视网膜病)和年龄相关的黄斑疾病高度相关。变性(AMD)。但是,这些图像是从具有不同强度分布或换句话说的不同设备中获取的,属于不同的成像域。本文提出了一种分割引导的域适应方法,以将来自多个设备的图像调整为单个图像域,其中可用的最先进的预训练模型可用。它避免了即将推出的新数据集的手动标签的时间消耗以及现有网络的重新培训。网络的语义一致性和全球特征一致性将最大程度地减少许多研究人员报告的幻觉效果,这些效应对周期矛盾的生成对抗网络(Cyclegan)体系结构。
translated by 谷歌翻译
磁共振图像(MRI)被广泛用于量化前庭切片瘤和耳蜗。最近,深度学习方法显示了用于分割这些结构的最先进的性能。但是,培训细分模型可能需要目标域中的手动标签,这是昂贵且耗时的。为了克服这个问题,域的适应是一种有效的方法,可以利用来自源域的信息来获得准确的分割,而无需在目标域中进行手动标签。在本文中,我们提出了一个无监督的学习框架,以分割VS和耳蜗。我们的框架从对比增强的T1加权(CET1-W)MRI及其标签中利用信息,并为T2加权MRIS产生分割,而目标域中没有任何标签。我们首先应用了一个发电机来实现图像到图像翻译。接下来,我们从不同模型的集合中集合输出以获得最终的分割。为了应对来自不同站点/扫描仪的MRI,我们在培训过程中应用了各种“在线”增强量,以更好地捕获几何变异性以及图像外观和质量的可变性。我们的方法易于构建和产生有希望的分割,在验证集中,VS和耳蜗的平均骰子得分分别为0.7930和0.7432。
translated by 谷歌翻译
Magnetic resonance (MR) and computer tomography (CT) images are two typical types of medical images that provide mutually-complementary information for accurate clinical diagnosis and treatment. However, obtaining both images may be limited due to some considerations such as cost, radiation dose and modality missing. Recently, medical image synthesis has aroused gaining research interest to cope with this limitation. In this paper, we propose a bidirectional learning model, denoted as dual contrast cycleGAN (DC-cycleGAN), to synthesize medical images from unpaired data. Specifically, a dual contrast loss is introduced into the discriminators to indirectly build constraints between real source and synthetic images by taking advantage of samples from the source domain as negative samples and enforce the synthetic images to fall far away from the source domain. In addition, cross-entropy and structural similarity index (SSIM) are integrated into the DC-cycleGAN in order to consider both the luminance and structure of samples when synthesizing images. The experimental results indicate that DC-cycleGAN is able to produce promising results as compared with other cycleGAN-based medical image synthesis methods such as cycleGAN, RegGAN, DualGAN, and NiceGAN. The code will be available at https://github.com/JiayuanWang-JW/DC-cycleGAN.
translated by 谷歌翻译
域适应是一种解决未经看线环境中缺乏大量标记数据的技术。提出了无监督的域适应,以使模型适用于使用单独标记的源数据和未标记的目标域数据的新模式。虽然已经提出了许多图像空间域适配方法来捕获像素级域移位,但是这种技术可能无法维持分割任务的高电平语义信息。对于生物医学图像的情况,在域之间的图像转换操作期间,诸如血管的细细节可能会丢失。在这项工作中,我们提出了一种模型,它使用周期 - 一致丢失在域之间适应域,同时通过在适应过程中强制执行基于边缘的损耗来维持原始图像的边缘细节。我们通过将其与其他两只眼底血管分割数据集的其他方法进行比较来证明我们的算法的有效性。与SOTA和〜5.2增量相比,我们达到了1.1〜9.2递增的骰子分数。
translated by 谷歌翻译