Early on during a pandemic, vaccine availability is limited, requiring prioritisation of different population groups. Evaluating vaccine allocation is therefore a crucial element of pandemics response. In the present work, we develop a model to retrospectively evaluate age-dependent counterfactual vaccine allocation strategies against the COVID-19 pandemic. To estimate the effect of allocation on the expected severe-case incidence, we employ a simulation-assisted causal modelling approach which combines a compartmental infection-dynamics simulation, a coarse-grained, data-driven causal model and literature estimates for immunity waning. We compare Israel's implemented vaccine allocation strategy in 2021 to counterfactual strategies such as no prioritisation, prioritisation of younger age groups or a strict risk-ranked approach; we find that Israel's implemented strategy was indeed highly effective. We also study the marginal impact of increasing vaccine uptake for a given age group and find that increasing vaccinations in the elderly is most effective at preventing severe cases, whereas additional vaccinations for middle-aged groups reduce infections most effectively. Due to its modular structure, our model can easily be adapted to study future pandemics. We demonstrate this flexibility by investigating vaccine allocation strategies for a pandemic with characteristics of the Spanish Flu. Our approach thus helps evaluate vaccination strategies under the complex interplay of core epidemic factors, including age-dependent risk profiles, immunity waning, vaccine availability and spreading rates.
translated by 谷歌翻译
Strategic test allocation plays a major role in the control of both emerging and existing pandemics (e.g., COVID-19, HIV). Widespread testing supports effective epidemic control by (1) reducing transmission via identifying cases, and (2) tracking outbreak dynamics to inform targeted interventions. However, infectious disease surveillance presents unique statistical challenges. For instance, the true outcome of interest - one's positive infectious status, is often a latent variable. In addition, presence of both network and temporal dependence reduces the data to a single observation. As testing entire populations regularly is neither efficient nor feasible, standard approaches to testing recommend simple rule-based testing strategies (e.g., symptom based, contact tracing), without taking into account individual risk. In this work, we study an adaptive sequential design involving n individuals over a period of {\tau} time-steps, which allows for unspecified dependence among individuals and across time. Our causal target parameter is the mean latent outcome we would have obtained after one time-step, if, starting at time t given the observed past, we had carried out a stochastic intervention that maximizes the outcome under a resource constraint. We propose an Online Super Learner for adaptive sequential surveillance that learns the optimal choice of tests strategies over time while adapting to the current state of the outbreak. Relying on a series of working models, the proposed method learns across samples, through time, or both: based on the underlying (unknown) structure in the data. We present an identification result for the latent outcome in terms of the observed data, and demonstrate the superior performance of the proposed strategy in a simulation modeling a residential university environment during the COVID-19 pandemic.
translated by 谷歌翻译
我们提出了Crisp(COVID-19风险评分预测),这是一种基于SEIR模型的人群传播的COVID-19感染的概率图形模型,我们假设跨时间跨越各种渠道之间的(1)个体之间的相互接触(1)例如,蓝牙接触轨迹)以及(2)在给定时间的测试结果,以进行感染,暴露和免疫测试。我们的微型模型在每个时间点都跟踪每个人的感染状态,从易感性,暴露,感染性到恢复。我们既开发蒙特卡洛EM,又开发传递算法的消息来推断接触通道特定的感染传输概率。鉴于所有接触和测试结果数据的潜在感染状态,我们的蒙特卡洛算法使用gibbs采样在整个分析时间内绘制每个人的潜在感染状态的样本。使用模拟数据的实验结果表明,我们的清晰模型可以通过繁殖因子$ R_0 $参数化,并展示了与经典SEIR模型相似的人群水平的传染性和恢复时间序列。但是,由于单个接触数据,该模型允许精细的粒度控制和推断各种COVID-19减轻和抑制政策度量。此外,Block-GIBBS采样算法能够在测试过程隔离方法中支持有效的测试,以包含COVID-19的感染扩散。据我们所知,这是第一个基于个人水平的接触数据对Covid-19感染有效推断的模型;大多数流行病模型是宏观模型,这些模型在整个人群中推理。 Crisp的实现可在Python和C ++中获得,网址为https://github.com/zalandoresearch/crisp。
translated by 谷歌翻译
流行病学中的数学模型是一种不可或缺的工具,可以确定传染病的动态和重要特征。除了他们的科学价值之外,这些模型通常用于在正在进行的爆发期间提供政治决策和干预措施。然而,通过将复杂模型连接到真实数据来可靠地推断正在进行的爆发的动态仍然很难,并且需要费力的手动参数拟合或昂贵的优化方法,这些方法必须从划痕中重复给定模型的每个应用。在这项工作中,我们用专门的神经网络的流行病学建模的新组合来解决这个问题。我们的方法需要两个计算阶段:在初始训练阶段中,描述该流行病的数学模型被用作神经网络的教练,该主管是关于全球可能疾病动态的全球知识。在随后的推理阶段,训练有素的神经网络处理实际爆发的观察到的数据,并且揭示了模型的参数,以便实际地再现观察到的动态并可可靠地预测未来的进展。通过其灵活的框架,我们的仿真方法适用于各种流行病学模型。此外,由于我们的方法是完全贝叶斯的,它旨在纳入所有可用的关于合理参数值的先前知识,并返回这些参数上的完整关节后部分布。我们的方法在德国的早期Covid-19爆发阶段的应用表明,我们能够获得可靠的概率估计对重要疾病特征,例如生成时间,未检测到的感染部分,症状发作前的传播可能性,以及报告延迟非常适中的现实观测。
translated by 谷歌翻译
共同检测和隔离Covid-19患者对于成功实施缓解策略并最终遏制疾病扩散至关重要。由于在每个国家 /地区进行的每日共同测试数量有限,因此模拟COVID-19的扩散以及目前每种缓解策略的潜在影响仍然是管理医疗保健系统和指导决策者的最有效方法之一。我们介绍了Covidhunter,这是一种灵活而准确的Covid-19爆发模拟模型,评估了当前适用于该地区的缓解措施,可预测Covid-19统计数据(每日案件,住院和死亡人数),并就何种建议提供建议。力量即将进行的缓解措施应该是。 Covidhunter的关键思想是通过模拟考虑到外部因素的影响,例如环境条件(例如气候,温度,湿度,湿度),关注的不同变体,疫苗接种率和缓解措施。 Covidhunter以瑞士为案例研究,估计我们正在经历一场致命的新浪潮,该浪潮将于2022年1月26日达到顶峰,这与我们2020年2月的浪潮非常相似。决策者只有一个选择是为了增加30天的当前缓解措施的强度。与现有模型不同,Covidhunter模型可以准确监视,并预测COVID-19造成的病例,住院和死亡人数。我们的模型可以灵活地进行配置,并且可以易于修改,以在不同的环境条件和缓解措施下对不同方案进行建模。我们在https://github.com/cmu-safari/covidhunter上发布了covidhunter实现的源代码。
translated by 谷歌翻译
背景:COVID-19患者的早期检测和隔离对于成功实施缓解策略并最终遏制疾病扩散至关重要。由于在每个国家 /地区进行的每日共同测试数量有限,因此模拟COVID-19的扩散以及目前每种缓解策略的潜在影响仍然是管理医疗保健系统和指导决策者的最有效方法之一。方法:我们介绍了Covidhunter,这是一种灵活而准确的Covid-19爆发模拟模型,该模型评估了应用于区域的当前缓解措施,并提供有关即将进行的缓解措施的强度的建议。 Covidhunter的关键思想是通过模拟考虑到外部因素的影响,例如环境条件(例如气候,温度,湿度,湿度)和缓解措施。结果:使用瑞士作为案例研究,Covidhunter估计,如果政策制定者放宽30天的缓解措施50%,那么医院病床的日常容量和每日死亡人数平均每天的死亡人数平均增加了5.1倍,则会增加5.1倍谁可能会占用ICU床和呼吸机一段时间。与现有模型不同,Covidhunter模型可以准确监视,并预测COVID-19造成的病例,住院和死亡人数。我们的模型可以灵活地配置,并且可以易于修改,以在不同的环境条件和缓解措施下对不同方案进行建模。可用性:我们在https://github.com/cmu-safari/covidhunter上发布了covidhunter实现的源代码,并展示如何在任何情况下灵活配置我们的模型,并轻松地将其扩展为不同的度量和条件。
translated by 谷歌翻译
Based on administrative data of unemployed in Belgium, we estimate the labour market effects of three training programmes at various aggregation levels using Modified Causal Forests, a causal machine learning estimator. While all programmes have positive effects after the lock-in period, we find substantial heterogeneity across programmes and unemployed. Simulations show that 'black-box' rules that reassign unemployed to programmes that maximise estimated individual gains can considerably improve effectiveness: up to 20 percent more (less) time spent in (un)employment within a 30 months window. A shallow policy tree delivers a simple rule that realizes about 70 percent of this gain.
translated by 谷歌翻译
由于Covid-19-19疫苗可用,因此没有研究量化不同的灾难疏散策略如何减轻避难所中的大流行风险。因此,我们应用了一个年龄结构化的流行病学模型,称为易感性暴露感染(SEIR)模型,以研究台湾不同的疫苗摄取水平以及在台湾实施的转移方案在多大程度上降低了感染和延迟流行峰值的情况。台湾的转移协议涉及转移因曝光而自我占用的人,从而阻止了他们与集体庇护所的普通公众融合。转移方案,结合足够的疫苗摄取,可以减少相对于没有这种策略的情况,相对于场景,感染的最大数量和延迟爆发。当所有暴露的人的转移是不可能的,或者疫苗的摄取不足时,转移方案仍然很有价值。此外,一组主要由年轻人人口组成的撤离者往往会早日出现大流行峰值,并且在实施转移方案时,多数老年人组的感染比多数老年人多。但是,当不执行转移方案时,多数老年人群体比大多数年轻成人群体高达20%。
translated by 谷歌翻译
Multiple lines of evidence strongly suggest that infection hotspots, where a single individual infects many others, play a key role in the transmission dynamics of COVID-19. However, most of the existing epidemiological models fail to capture this aspect by neither representing the sites visited by individuals explicitly nor characterizing disease transmission as a function of individual mobility patterns. In this work, we introduce a temporal point process modeling framework that specifically represents visits to the sites where individuals get in contact and infect each other. Under our model, the number of infections caused by an infectious individual naturally emerges to be overdispersed. Using an efficient sampling algorithm, we demonstrate how to estimate the transmission rate of infectious individuals at the sites they visit and in their households using Bayesian optimization and longitudinal case data. Simulations using fine-grained and publicly available demographic data and site locations from Bern, Switzerland showcase the flexibility of our framework. To facilitate research and analyses of other cities and regions, we release an open-source implementation of our framework.
translated by 谷歌翻译
决策者需要在采用新的治疗政策之前预测结果的发展,该政策定义了何时以及如何连续地影响结果的治疗序列。通常,预测介入的未来结果轨迹的算法将未来治疗的固定顺序作为输入。这要么忽略了未来治疗对结果之前的结果的依赖性,要么隐含地假设已知治疗政策,因此排除了该政策未知或需要反事实分析的情况。为了应对这些局限性,我们开发了一种用于治疗和结果的联合模型,该模型允许估计处理策略和顺序治疗(OUT COMECTION数据)的影响。它可以回答有关治疗政策干预措施的介入和反事实查询,因为我们使用有关血糖进展的现实数据显示,并在此基础上进行了模拟研究。
translated by 谷歌翻译
发现新药是寻求并证明因果关系。作为一种新兴方法利用人类的知识和创造力,数据和机器智能,因果推论具有减少认知偏见并改善药物发现决策的希望。尽管它已经在整个价值链中应用了,但因子推理的概念和实践对许多从业者来说仍然晦涩难懂。本文提供了有关因果推理的非技术介绍,审查了其最新应用,并讨论了在药物发现和开发中采用因果语言的机会和挑战。
translated by 谷歌翻译
基于时间点过程的机器学习模型是在连续时间内涉及离散事件的各种应用中的技术的技术。但是,这些模型缺乏回答反事实问题的能力,因为这些模型正在用于通知有针对性的干预措施越来越相关。在这项工作中,我们的目标是填补这个差距。为此,我们首先开发一种因果点流程的变薄模型,这些过程构建在Gumbel-Max结构因果模型上。该模型满足所需的反事实单调性条件,足以识别稀疏过程中的反事实动态。然后,考虑到具有给定强度函数的时间点处理的观察到实现,我们开发了一种采样算法,该采样算法使用上述变化的因果模型和叠加定理来模拟给定的替代强度函数下的时间点处理的反事实实现。使用综合性和实际流行病学数据的仿真实验表明,我们的算法提供的反事实实现可以提供有价值的见解来增强目标干预措施。
translated by 谷歌翻译
基于AI和机器学习的决策系统已在各种现实世界中都使用,包括医疗保健,执法,教育和金融。不再是牵强的,即设想一个未来,自治系统将推动整个业务决策,并且更广泛地支持大规模决策基础设施以解决社会最具挑战性的问题。当人类做出决定时,不公平和歧视的问题普遍存在,并且当使用几乎没有透明度,问责制和公平性的机器做出决定时(或可能会放大)。在本文中,我们介绍了\ textit {Causal公平分析}的框架,目的是填补此差距,即理解,建模,并可能解决决策设置中的公平性问题。我们方法的主要见解是将观察到数据中存在的差异的量化与基本且通常是未观察到的因果机制收集的因果机制的收集,这些机制首先会产生差异,挑战我们称之为因果公平的基本问题分析(FPCFA)。为了解决FPCFA,我们研究了分解差异和公平性的经验度量的问题,将这种变化归因于结构机制和人群的不同单位。我们的努力最终达到了公平地图,这是组织和解释文献中不同标准之间关系的首次系统尝试。最后,我们研究了进行因果公平分析并提出一本公平食谱的最低因果假设,该假设使数据科学家能够评估不同影响和不同治疗的存在。
translated by 谷歌翻译
因果推断能够估计治疗效果(即,治疗结果的因果效果),使各个领域的决策受益。本研究中的一个基本挑战是观察数据的治疗偏见。为了提高对因果推断的观察研究的有效性,基于代表的方法作为最先进的方法表明了治疗效果估计的卓越性能。基于大多数基于表示的方法假设所有观察到的协变量都是预处理的(即,不受治疗影响的影响),并学习这些观察到的协变量的平衡表示,以估算治疗效果。不幸的是,这种假设往往在实践中往往是太严格的要求,因为一些协调因子是通过对治疗的干预进行改变(即,后治疗)来改变。相比之下,从不变的协变量中学到的平衡表示因此偏置治疗效果估计。
translated by 谷歌翻译
This work shows how to leverage causal inference to understand the behavior of complex learning systems interacting with their environment and predict the consequences of changes to the system. Such predictions allow both humans and algorithms to select the changes that would have improved the system performance. This work is illustrated by experiments on the ad placement system associated with the Bing search engine.
translated by 谷歌翻译
我们应用因果机学习算法来评估营销干预措施的因果影响,即优惠券活动,对零售商的销售。除了评估不同类型的优惠券的平均影响外,我们还调查了不同客户群的因果关系效应的异质性,例如,在相对较高的客户与先前购买相对较高的客户之间。最后,我们使用最佳政策学习来确定(以数据驱动方式)哪些客户群应针对优惠券活动,以最大程度地提高营销干预措施在销售方面的有效性。我们发现,在检查的五个优惠券类别中,只有两个,即适用于药店产品和其他食品产品类别的优惠券,对零售商销售具有统计学上的显着积极影响。对小组平均治疗效果的评估表明,在商店的先前购买中定义的客户群中,优惠券提供的影响有很大的差异,药品店优惠券在先前购买较高的客户和其他食品优惠券中特别有效先前购买较低的客户。我们的研究提供了一种用例,用于在业务分析中应用因果机学习,以评估特定公司政策(例如营销活动)对决策支持的因果影响。
translated by 谷歌翻译
有许多可用于选择优先考虑治疗的可用方法,包括基于治疗效果估计,风险评分和手工制作规则的遵循申请。我们将秩加权平均治疗效应(RATY)指标作为一种简单常见的指标系列,用于比较水平竞争范围的治疗优先级规则。对于如何获得优先级规则,率是不可知的,并且仅根据他们在识别受益于治疗中受益的单位的方式进行评估。我们定义了一系列速率估算器,并证明了一个中央限位定理,可以在各种随机和观测研究环境中实现渐近精确的推断。我们为使用自主置信区间的使用提供了理由,以及用于测试关于治疗效果中的异质性的假设的框架,与优先级规则相关。我们对速率的定义嵌套了许多现有度量,包括QINI系数,以及我们的分析直接产生了这些指标的推论方法。我们展示了我们从个性化医学和营销的示例中的方法。在医疗环境中,使用来自Sprint和Accor-BP随机对照试验的数据,我们发现没有明显的证据证明异质治疗效果。另一方面,在大量的营销审判中,我们在一些数字广告活动的治疗效果中发现了具有的强大证据,并证明了如何使用率如何比较优先考虑估计风险的目标规则与估计治疗效益优先考虑的目标规则。
translated by 谷歌翻译
COVID-19的大流行提出了对多个领域决策者的流行预测的重要性,从公共卫生到整个经济。虽然预测流行进展经常被概念化为类似于天气预测,但是它具有一些关键的差异,并且仍然是一项非平凡的任务。疾病的传播受到人类行为,病原体动态,天气和环境条件的多种混杂因素的影响。由于政府公共卫生和资助机构的倡议,捕获以前无法观察到的方面的丰富数据来源的可用性增加了研究的兴趣。这尤其是在“以数据为中心”的解决方案上进行的一系列工作,这些解决方案通过利用非传统数据源以及AI和机器学习的最新创新来增强我们的预测能力的潜力。这项调查研究了各种数据驱动的方法论和实践进步,并介绍了一个概念框架来导航它们。首先,我们列举了与流行病预测相关的大量流行病学数据集和新的数据流,捕获了各种因素,例如有症状的在线调查,零售和商业,流动性,基因组学数据等。接下来,我们将讨论关注最近基于数据驱动的统计和深度学习方法的方法和建模范式,以及将机械模型知识域知识与统计方法的有效性和灵活性相结合的新型混合模型类别。我们还讨论了这些预测系统的现实部署中出现的经验和挑战,包括预测信息。最后,我们重点介绍了整个预测管道中发现的一些挑战和开放问题。
translated by 谷歌翻译
电力行业正在大力实施智能网格技术,以提高可靠性,可用性,安全性和效率。该实施需要技术进步,标准和法规的发展以及测试和计划。智能电网载荷预测和管理对于降低需求波动和改善连接发电机,分销商和零售商的市场机制至关重要。在政策实施或外部干预措施中,有必要分析其对电力需求的影响的不确定性,以使系统对需求的波动更加准确。本文分析了外部干预的不确定性对电力需求的影响。它实现了一种结合概率和全局预测模型的框架,使用深度学习方法来估计干预措施的因果影响分布。通过预测受影响实例的反事实分布结果,然后将其与实际结果进行对比来评估因果效应。我们将COVID-19锁定对能源使用的影响视为评估这种干预对电力需求分布的不均匀影响的案例研究。我们可以证明,在澳大利亚和某些欧洲国家的最初封锁期间,槽通常比峰值更大的下降,而平均值几乎不受影响。
translated by 谷歌翻译
预测风险评分越来越多地用于指导复杂环境(尤其是医疗保健)中的临床或其他干预措施。直接更新用于指导干预措施的风险评分会导致风险估计。我们建议使用“保留集”(未接受风险评分引导干预措施的人口子集)进行更新,以防止这种情况。由于保留集中的样本并不能从风险预测中受益,因此其规模必须权衡更新的风险评分的性能,同时最大程度地减少被保留样品的数量。我们证明,这种方法的表现优于简单的替代方案,并且通过定义一般的损失函数描述了可以轻松识别最佳保持尺寸(OHS)的条件。我们引入了OHS估计的参数和半参数算法,并证明了它们在近期对先兆子痫的风险评分上的使用。基于这些结果,我们认为保留集是安全,可行且易于实施的手段,可以安全地更新预测风险得分。
translated by 谷歌翻译