研究目标:评分多个词法中的绩效差异是一个众所周知的问题。大多数现有的自动睡眠评分系统都是使用单个得分手注释的标签培训的,该标签将主观评估转移到模型中。当有两个或多个得分手的注释可用时,评分模型通常会在得分手共识上训练。平均得分手的主观性被转移到模型中,失去了有关不同得分子之间内部变异性的信息。在这项研究中,我们旨在将不同医生的多重知识插入培训程序中。目标是优化模型培训,利用可以从一组得分手共识中提取的全部信息。方法:我们在三个不同的多得分数据库上训练两个基于深度学习的模型。我们将标签平滑技术与软传感器(LSSC)分布一起利用,以在模型的训练过程中插入多重知识。我们介绍了平均余弦相似性度量(ACS),以量化模型与LSSC产生的催眠密度毛电和得分手共识产生的催眠密度图之间的相似性。结果:当我们使用LSSC训练模型时,模型的性能会改善所有数据库。我们发现,通过LSSC训练的模型和共识产生的催眠仪型的催眠刻画之间的ACS增加(高达6.4%)。结论:我们的方法绝对使模型能够更好地适应得分手的共识。未来的工作将集中于对不同评分体系结构的进一步调查。
translated by 谷歌翻译
AASM准则是为了有一种常用的方法,旨在标准化睡眠评分程序的数十年努力的结果。该指南涵盖了从技术/数字规格(例如,推荐的EEG推导)到相应的详细睡眠评分规则到年龄的几个方面。在睡眠评分自动化的背景下,与许多其他技术相比,深度学习表现出更好的性能。通常,临床专业知识和官方准则对于支持自动睡眠评分算法在解决任务时至关重要。在本文中,我们表明,基于深度学习的睡眠评分算法可能不需要充分利用临床知识或严格遵循AASM准则。具体而言,我们证明了U-Sleep是一种最先进的睡眠评分算法,即使使用临床非申请或非规定派生,也可以解决得分任务,即使无需利用有关有关的信息,也无需利用有关有关的信息。受试者的年代年龄。我们最终加强了一个众所周知的发现,即使用来自多个数据中心的数据始终导致与单个队列上的培训相比,可以使性能更好。确实,我们表明,即使增加了单个数据队列的大小和异质性,后者仍然有效。在我们的所有实验中,我们使用了来自13个不同临床研究的28528多个多摄影研究研究。
translated by 谷歌翻译
近年来,深度学习显示了广泛区域的潜力和效率,包括计算机视觉,图像和信号处理。然而,由于缺乏算法决策和结果的解释性,用户应用程序仍然存在转化挑战。这个黑匣子问题对于高风险应用程序(例如与医疗相关的决策制定)尤其有问题。当前的研究目标是设计一个可解释的深度学习系统,用于对脑电图的时间序列分类(EEG)进行睡眠阶段评分,以此作为设计透明系统的一步。我们已经开发了一个可解释的深神经网络,该网络包括基于内核的层,该层是基于人类专家在视觉分析记录的视觉分析中用于睡眠评分的一组原理。将基于内核的卷积层定义并用作系统的第一层,并可用于用户解释。训练有素的系统及其结果从脑电图信号的微观结构(例如训练的内核)以及每个内核对检测到的阶段的效果,宏观结构(例如阶段之间的过渡)中解释了四个级别。拟议的系统表现出比先前的研究更大的性能,而解释的结果表明,该系统学习了与专家知识一致的信息。
translated by 谷歌翻译
在过去的几年中,自动睡眠评分的研究主要集中在开发日益复杂的深度学习体系结构上。但是,最近,这些方法仅实现了边际改进,通常以需要更多数据和更昂贵的培训程序为代价。尽管所有这些努力及其令人满意的表现,但在临床背景下,自动睡眠期临时解决方案并未被广泛采用。我们认为,由于很难训练,部署和繁殖,大多数对睡眠评分的深度学习解决方案在现实世界中的适用性受到限制。此外,这些解决方案缺乏可解释性和透明度,这通常是提高采用率的关键。在这项工作中,我们使用经典的机器学习来重新审视睡眠阶段分类的问题。结果表明,通过传统的机器学习管道可以实现最新的性能,该管道包括预处理,功能提取和简单的机器学习模型。特别是,我们分析了线性模型和非线性(梯度提升)模型的性能。我们的方法超过了两个公共数据集上的最新方法(使用相同的数据):Sleep--EDF SC-20(MF1 0.810)和Sleep-eDF ST(MF1 0.795),同时在Sleep-eDF上取得了竞争成果SC-78(MF1 0.775)和质量SS3(MF1 0.817)。我们表明,对于睡眠阶段评分任务,工程特征向量的表现力与深度学习模型的内部学表现相当。该观察结果为临床采用打开了大门,因为代表性功能向量允许利用传统机器学习模型的可解释性和成功记录。
translated by 谷歌翻译
目的:开发和验证一种自动化方法,用于对新生儿重症监护病房中睡眠状态波动的床旁监测。方法:基于深度学习的算法是使用30个近期新生儿的长期(a)脑电图监测的53个EEG录音设计和训练的。使用来自30个多摄影记录的外部数据集对结果进行了验证。除了训练和验证单个脑电图通道安静的睡眠探测器外,我们还构建了睡眠状态趋势(SST),这是一种可视化分类器输出的床旁准备手段。结果:训练数据中安静的睡眠检测的准确性为90%,在4电极记录中获得的所有双极派生中,精度是可比的(85-86%)。该算法很好地概括了外部数据集,尽管信号推导不同,但仍显示81%的总体精度。 SST允许对分类器输出的直观,清晰可视化。结论:可以从单个EEG通道的高保真度中检测到睡眠状态的波动,并且可以将结果可视化为床边监视器中透明和直观的趋势。意义:睡眠状态趋势(SST)可以为护理人员提供对睡眠状态波动及其周期性的实时视图。
translated by 谷歌翻译
自动睡眠评分对于诊断和治疗睡眠障碍至关重要,并在家庭环境中实现纵向睡眠跟踪。通常,对单渠道脑电图(EEG)进行基于学习的自动睡眠评分是积极研究的,因为困难在睡眠过程中获得多通道信号。但是,由于以下问题,来自原始脑电图信号的学习表示形式挑战:1)与睡眠相关的脑电图模式发生在不同的时间和频率尺度上,2)睡眠阶段共享相似的脑电图模式。为了解决这些问题,我们提出了一个名为Sleepyco的深度学习框架,该框架结合了1)功能金字塔和2)自动睡眠评分的监督对比度学习。对于特征金字塔,我们提出了一个名为sleepyco-backbone的骨干网络,以考虑在不同的时间和频率尺度上的多个特征序列。监督的对比学习允许网络通过最大程度地降低类内部特征之间的距离并同时最大程度地提高阶层间特征之间的距离来提取类别特征。对四个公共数据集的比较分析表明,Sleepyco始终优于基于单渠道EEG的现有框架。广泛的消融实验表明,Sleepyco表现出增强的总体表现,N1和快速眼运动(REM)阶段之间的歧视有了显着改善。
translated by 谷歌翻译
在这项工作中,我们介绍了一种新型的元学习方法,用于基于自学学习的学习来进行睡眠评分。我们的方法旨在构建可以概括不同患者和记录设施的睡眠评分模型,但不需要进一步适应目标数据。为了实现这一目标,我们通过合并自我监督的学习(SSL)阶段并将其称为S2MAML,在模型不可知的元学习(MAML)框架上构建方法。我们表明S2MAML可以显着胜过MAML。性能的增长来自SSL阶段,我们以通用伪任务为基础,该任务限制了培训数据集中存在的特定主题模式。我们表明,S2MAML在SC,ST,ISRUC,UCD和CAP数据集上优于标准监督学习和MAML。
translated by 谷歌翻译
尽管最近对成人自动睡眠分期进行了巨大进展,但目前是未知的,如果最先进的算法概括为儿科人群,这在过夜多核心摄影(PSG)中显示出独特的特征。为了回答这个问题,在这项工作中,我们对儿科自动睡眠分期的最先进的深层学习方法进行了大规模比较研究。采用各种具有发散特征的六种不同的深神经网络的选择来评估超过1,200名儿童的样品,横跨宽度的阻塞性睡眠呼吸暂停(OSA)严重程度。我们的实验结果表明,在新科目评估时自动儿科睡眠滞高器的个性表现相当于在成人报告的专家级。将六个级别与集合模型相结合,进一步提高了暂存精度,达到了87.7%的整体准确性,一个0.837的Cohen的Kappa,在新科目评估时,单通道EEG的宏观F1分数为84.2%。当使用双通道EEG $ \ CDOT $ EOT时,达到88.8%的准确性,即0.852的精度,宏观F1分数为85.8%时,该性能进一步提高。同时,集合模型导致预测性不确定性降低。结果还表明,当训练和测试数据分开和临床干预后7个月记录7个月时,研究了算法及其集合对于概念漂移是强大的。详细分析进一步展示了自动分级彼此之间的“几乎完美”协议及其在分期错误上的类似模式。
translated by 谷歌翻译
本文提出了一个新颖的框架,以根据权威的睡眠医学指导自动捕获人睡眠的脑电图(EEG)信号的时间频率。该框架由两个部分组成:第一部分通过将输入EEG频谱图将其划分为一系列时频贴片来提取信息特征。第二部分是由基于注意力的体系结构有效地搜索分配的时频贴片和并行睡眠阶段定义因素之间的相关性构成的。拟议的管道在Sleep Heart Health研究数据集上进行了验证,其阶段唤醒,N2和N3的新最新结果获得了相应的F1分数为0.93、0.88和0.87,仅使用EEG信号。该提出的方法还具有高评分者间可靠性为0.80 kappa。我们还可以看到睡眠分期决策与提出方法提取的特征之间的对应关系,为我们的模型提供了强大的解释性。
translated by 谷歌翻译
Seizure type identification is essential for the treatment and management of epileptic patients. However, it is a difficult process known to be time consuming and labor intensive. Automated diagnosis systems, with the advancement of machine learning algorithms, have the potential to accelerate the classification process, alert patients, and support physicians in making quick and accurate decisions. In this paper, we present a novel multi-path seizure-type classification deep learning network (MP-SeizNet), consisting of a convolutional neural network (CNN) and a bidirectional long short-term memory neural network (Bi-LSTM) with an attention mechanism. The objective of this study was to classify specific types of seizures, including complex partial, simple partial, absence, tonic, and tonic-clonic seizures, using only electroencephalogram (EEG) data. The EEG data is fed to our proposed model in two different representations. The CNN was fed with wavelet-based features extracted from the EEG signals, while the Bi-LSTM was fed with raw EEG signals to let our MP-SeizNet jointly learns from different representations of seizure data for more accurate information learning. The proposed MP-SeizNet was evaluated using the largest available EEG epilepsy database, the Temple University Hospital EEG Seizure Corpus, TUSZ v1.5.2. We evaluated our proposed model across different patient data using three-fold cross-validation and across seizure data using five-fold cross-validation, achieving F1 scores of 87.6% and 98.1%, respectively.
translated by 谷歌翻译
在过去的几年中,深度学习用于脑电图(EEG)分类任务一直在迅速增长,但其应用程序受到EEG数据集相对较小的限制。数据扩展包括在培训过程中人为地增加数据集的大小,它一直是在计算机视觉或语音等应用程序中获得最新性能的关键要素。尽管文献中已经提出了一些脑电图数据的增强转换,但它们对跨任务的绩效的积极影响仍然难以捉摸。在这项工作中,我们提出了对主要现有脑电图增强的统一和详尽的分析,该分析在常见的实验环境中进行了比较。我们的结果强调了为睡眠阶段分类和大脑计算机界面界面的最佳数据增强,在某些情况下显示预测功率改善大于10%。
translated by 谷歌翻译
Cardiac resynchronization therapy (CRT) is a treatment that is used to compensate for irregularities in the heartbeat. Studies have shown that this treatment is more effective in heart patients with left bundle branch block (LBBB) arrhythmia. Therefore, identifying this arrhythmia is an important initial step in determining whether or not to use CRT. On the other hand, traditional methods for detecting LBBB on electrocardiograms (ECG) are often associated with errors. Thus, there is a need for an accurate method to diagnose this arrhythmia from ECG data. Machine learning, as a new field of study, has helped to increase human systems' performance. Deep learning, as a newer subfield of machine learning, has more power to analyze data and increase systems accuracy. This study presents a deep learning model for the detection of LBBB arrhythmia from 12-lead ECG data. This model consists of 1D dilated convolutional layers. Attention mechanism has also been used to identify important input data features and classify inputs more accurately. The proposed model is trained and validated on a database containing 10344 12-lead ECG samples using the 10-fold cross-validation method. The final results obtained by the model on the 12-lead ECG data are as follows. Accuracy: 98.80+-0.08%, specificity: 99.33+-0.11 %, F1 score: 73.97+-1.8%, and area under the receiver operating characteristics curve (AUC): 0.875+-0.0192. These results indicate that the proposed model in this study can effectively diagnose LBBB with good efficiency and, if used in medical centers, will greatly help diagnose this arrhythmia and early treatment.
translated by 谷歌翻译
睡眠对婴儿,儿童和青少年的健康尤为重要,睡眠评分是准确诊断和治疗潜在的威胁生命状况的第一步。但是,与成人睡眠相比,儿科睡眠在健康的情况下与成人睡眠相比严重研究,并且为成年人开发的睡眠评分算法通常在婴儿身上表现不佳。在这里,我们介绍了最近在标准临床护理期间收集的最近大规模的小儿睡眠研究数据集中的第一个自动睡眠评分结果。我们开发了一个基于变压器的监督学习模型,该模型学会从数百万多通道脑电图(EEG)睡眠时期分类五个睡眠阶段,总体准确性为78%。此外,我们根据患者人口统计学和脑电图通道对模型性能进行了深入的分析。结果表明,对小儿睡眠的机器学习研究的需求日益增长。
translated by 谷歌翻译
智能手表或健身追踪器由于负担得起和纵向监测功能而获得了潜在的健康跟踪设备的广泛欢迎。为了进一步扩大其健康跟踪能力,近年来,研究人员开始研究在实时利用光摄影学(PPG)数据中进行心房颤动(AF)检测的可能性,这是一种几乎所有智能手表中广泛使用的廉价传感器。从PPG信号检测AF检测的重大挑战来自智能手表PPG信号中的固有噪声。在本文中,我们提出了一种基于深度学习的新方法,即利用贝叶斯深度学习的力量来准确地从嘈杂的PPG信号中推断出AF风险,同时提供了预测的不确定性估计。在两个公开可用数据集上进行的广泛实验表明,我们提出的方法贝尼斯甲的表现优于现有的最新方法。此外,贝内斯比特(Bayesbeat)的参数比最先进的基线方法要少40-200倍,使其适合在资源约束可穿戴设备中部署。
translated by 谷歌翻译
最近基于深度学习的临床决策支持系统的准确性是有希望的。但是,缺乏模型可解释性仍然是医疗保健中人工智能广泛采用的障碍。使用睡眠作为案例研究,我们提出了一种可推广的方法,将临床解释性与黑盒深度学习得出的高精度相结合。多聚词(PSG)的临床医生确定的睡眠阶段仍然是评估睡眠质量的金标准。但是,专家的PSG手册注释既昂贵又过时。我们建议使用嵌入式,规则和功能来读取PSG的农奴,可解释的睡眠分期。农奴通过从AASM手册中得出的有意义的特征来解释分类的睡眠阶段,用于睡眠和相关事件的评分。在农奴中,从卷积和复发性神经网络的混合体获得的嵌入被转移到可解释的特征空间。这些代表性的可解释功能用于训练简单的模型,例如浅决策树进行分类。模型结果将在两个公开可用的数据集上进行验证。农奴超过了可解释的睡眠分期的当前最新时间。 Serf使用梯度增压树作为分类器,在当前最新的黑盒模型的2%以内,获得了0.766 $ \ kappa $和0.870 AUC-ROC。
translated by 谷歌翻译
准确的睡眠阶段分类对于睡眠健康评估很重要。近年来,已经开发了几种基于深度学习和机器学习的睡眠阶段算法,并且在人类注释方面取得了表现。尽管性能提高,但最深入学习算法的局限性是其黑盒行为,它限制了它们在临床环境中的使用。在这里,我们提出了跨模式变压器,这是一种基于变压器的睡眠阶段分类的方法。我们的模型通过最先进的方法实现了竞争性能,并通过利用注意模块的可解释性方面消除了深度学习模型的黑盒行为。提出的跨模式变压器由一种新型的跨模式变压器编码器结构以及多尺度的一维卷积神经网络组成,用于自动表示学习。基于此设计的我们的睡眠阶段分类器能够以与最先进的方法相同或更好地达到睡眠阶段分类性能,以及可解释性,参数数量减少了四倍,并且比较培训时间减少了。到当前的最新。我们的代码可从https://github.com/jathurshan0330/cross-modal-transformer获得。
translated by 谷歌翻译
近年来,基于生理信号的认证表现出伟大的承诺,因为其固有的对抗伪造的鲁棒性。心电图(ECG)信号是最广泛研究的生物关像,也在这方面获得了最高的关注。已经证明,许多研究通过分析来自不同人的ECG信号,可以识别它们,可接受的准确性。在这项工作中,我们展示了EDITH,EDITH是一种基于深入的ECG生物识别认证系统的框架。此外,我们假设并证明暹罗架构可以在典型的距离指标上使用,以提高性能。我们使用4个常用的数据集进行了评估了伊迪丝,并使用少量节拍表现优于先前的工作。 Edith使用仅单一的心跳(精度为96-99.75%)进行竞争性,并且可以通过融合多个节拍(从3到6个节拍的100%精度)进一步提高。此外,所提出的暹罗架构管理以将身份验证等错误率(eer)降低至1.29%。具有现实世界实验数据的Edith的有限案例研究还表明其作为实际认证系统的潜力。
translated by 谷歌翻译
癫痫患者的长期监测来自实时检测和可穿戴设备设计的工程角度呈现出具有挑战性的问题。它需要新的解决方案,允许连续无阻碍的监控和可靠的癫痫发作检测和预测。在癫痫发作期间的人,脑状态和时间实例中存在脑电图(EEG)模式的高可变性,而且在非扣押期间。这使得癫痫癫痫发作检测非常具有挑战性,特别是如果数据仅在癫痫发作和非癫痫标签下分组。超方(HD)计算,一种新型机器学习方法,作为一个有前途的工具。但是,当数据显示高级别的可变性时,它具有一定的限制。因此,在这项工作中,我们提出了一种基于多心高清计算的新型半监督学习方法。多质心方法允许有几个代表癫痫发作和非癫痫发作状态的原型向量,这导致与简单的2级HD模型相比显着提高了性能。此外,现实生活数据不平衡造成了额外的挑战,并且在数据的平衡子集上报告的性能可能被高估。因此,我们测试我们的多质心方法,具有三个不同的数据集平衡方案,显示较少平衡数据集的性能提升更高。更具体地,在不平衡的测试集上实现了高达14%的改进,而不是比癫痫发作数据更加不癫痫发布的10倍。与此同时,与平衡数据集相比,子类的总数不会显着增加。因此,所提出的多质心方法可以是实现具有现实数据余额或在线学习期间实现高性能的重要因素,癫痫发作不常见。
translated by 谷歌翻译
目的:随着具有非传统电极配置的可穿戴睡眠监测设备的快速升高,需要自动算法,可以在具有少量标记数据的配置上执行睡眠暂存。转移学习具有从源模态(例如标准电极配置)到新的目标模态(例如非传统电极配置)的神经网络权重。方法:我们提出功能匹配,一个新的转移学习策略作为常用的芬降方法的替代方案。该方法包括培训具有来自源模态的大量数据的模型,以及源头和目标模态的成对样本很少。对于那些配对的样本,模型提取目标模态的特征,与来自源模态的相应样本相匹配。结果:我们将特征与三种不同的目标域的FineTuning进行比较,具有两个不同的神经网络架构,以及不同数量的培训数据。特别是在小型队列(即,在非传统的记录设置中标记的记录)上,具有系统地匹配的特征,具有平均相对差异的精度为不同场景和数据集的0.4%至4.7%。结论:我们的研究结果表明,特征符合FineTuning作为转移学习方法的特征,特别是在非常低的数据制度中。意义:因此,我们得出结论,特征匹配是具有新颖设备可穿戴睡眠分段的有希望的新方法。
translated by 谷歌翻译
背景:12个引线ECG是心血管疾病的核心诊断工具。在这里,我们描述并分析了一个集成的深度神经网络架构,从12个引导eCG分类了24个心脏异常。方法:我们提出了挤压和激发reset,以自动学习来自12个引主ECG的深度特征,以识别24个心脏病。在最终完全连接的层中,随着年龄和性别特征增强了深度特征。使用约束网格搜索设置每个类的输出阈值。为了确定为什么该模型的预测不正确,两个专家诊所人员独立地解释了一组关于左轴偏差的一次无序的ECG。结果:采用定制加权精度度量,我们达到了0.684的5倍交叉验证得分,灵敏度和特异性分别为0.758和0.969。我们在完整的测试数据中得分0.520,并在官方挑战排名中排名第21中。在一系列被错误分类的心电图中,两个临床医生和训练标签之间的协议差(临床医生1:Kappa = -0.057,临床医生2:Kappa = -0.159)。相比之下,临床医生之间的协议非常高(Kappa = 0.92)。讨论:与在相同数据上培训的模型相比,所提出的预测模型很好地对验证和隐藏的测试数据进行了良好。我们还发现培训标签的相当不一致,这可能会阻碍更准确的模型的开发。
translated by 谷歌翻译