近年来,深度学习显示了广泛区域的潜力和效率,包括计算机视觉,图像和信号处理。然而,由于缺乏算法决策和结果的解释性,用户应用程序仍然存在转化挑战。这个黑匣子问题对于高风险应用程序(例如与医疗相关的决策制定)尤其有问题。当前的研究目标是设计一个可解释的深度学习系统,用于对脑电图的时间序列分类(EEG)进行睡眠阶段评分,以此作为设计透明系统的一步。我们已经开发了一个可解释的深神经网络,该网络包括基于内核的层,该层是基于人类专家在视觉分析记录的视觉分析中用于睡眠评分的一组原理。将基于内核的卷积层定义并用作系统的第一层,并可用于用户解释。训练有素的系统及其结果从脑电图信号的微观结构(例如训练的内核)以及每个内核对检测到的阶段的效果,宏观结构(例如阶段之间的过渡)中解释了四个级别。拟议的系统表现出比先前的研究更大的性能,而解释的结果表明,该系统学习了与专家知识一致的信息。
translated by 谷歌翻译
目的:开发和验证一种自动化方法,用于对新生儿重症监护病房中睡眠状态波动的床旁监测。方法:基于深度学习的算法是使用30个近期新生儿的长期(a)脑电图监测的53个EEG录音设计和训练的。使用来自30个多摄影记录的外部数据集对结果进行了验证。除了训练和验证单个脑电图通道安静的睡眠探测器外,我们还构建了睡眠状态趋势(SST),这是一种可视化分类器输出的床旁准备手段。结果:训练数据中安静的睡眠检测的准确性为90%,在4电极记录中获得的所有双极派生中,精度是可比的(85-86%)。该算法很好地概括了外部数据集,尽管信号推导不同,但仍显示81%的总体精度。 SST允许对分类器输出的直观,清晰可视化。结论:可以从单个EEG通道的高保真度中检测到睡眠状态的波动,并且可以将结果可视化为床边监视器中透明和直观的趋势。意义:睡眠状态趋势(SST)可以为护理人员提供对睡眠状态波动及其周期性的实时视图。
translated by 谷歌翻译
本文提出了一个新颖的框架,以根据权威的睡眠医学指导自动捕获人睡眠的脑电图(EEG)信号的时间频率。该框架由两个部分组成:第一部分通过将输入EEG频谱图将其划分为一系列时频贴片来提取信息特征。第二部分是由基于注意力的体系结构有效地搜索分配的时频贴片和并行睡眠阶段定义因素之间的相关性构成的。拟议的管道在Sleep Heart Health研究数据集上进行了验证,其阶段唤醒,N2和N3的新最新结果获得了相应的F1分数为0.93、0.88和0.87,仅使用EEG信号。该提出的方法还具有高评分者间可靠性为0.80 kappa。我们还可以看到睡眠分期决策与提出方法提取的特征之间的对应关系,为我们的模型提供了强大的解释性。
translated by 谷歌翻译
自动睡眠评分对于诊断和治疗睡眠障碍至关重要,并在家庭环境中实现纵向睡眠跟踪。通常,对单渠道脑电图(EEG)进行基于学习的自动睡眠评分是积极研究的,因为困难在睡眠过程中获得多通道信号。但是,由于以下问题,来自原始脑电图信号的学习表示形式挑战:1)与睡眠相关的脑电图模式发生在不同的时间和频率尺度上,2)睡眠阶段共享相似的脑电图模式。为了解决这些问题,我们提出了一个名为Sleepyco的深度学习框架,该框架结合了1)功能金字塔和2)自动睡眠评分的监督对比度学习。对于特征金字塔,我们提出了一个名为sleepyco-backbone的骨干网络,以考虑在不同的时间和频率尺度上的多个特征序列。监督的对比学习允许网络通过最大程度地降低类内部特征之间的距离并同时最大程度地提高阶层间特征之间的距离来提取类别特征。对四个公共数据集的比较分析表明,Sleepyco始终优于基于单渠道EEG的现有框架。广泛的消融实验表明,Sleepyco表现出增强的总体表现,N1和快速眼运动(REM)阶段之间的歧视有了显着改善。
translated by 谷歌翻译
在过去的几年中,自动睡眠评分的研究主要集中在开发日益复杂的深度学习体系结构上。但是,最近,这些方法仅实现了边际改进,通常以需要更多数据和更昂贵的培训程序为代价。尽管所有这些努力及其令人满意的表现,但在临床背景下,自动睡眠期临时解决方案并未被广泛采用。我们认为,由于很难训练,部署和繁殖,大多数对睡眠评分的深度学习解决方案在现实世界中的适用性受到限制。此外,这些解决方案缺乏可解释性和透明度,这通常是提高采用率的关键。在这项工作中,我们使用经典的机器学习来重新审视睡眠阶段分类的问题。结果表明,通过传统的机器学习管道可以实现最新的性能,该管道包括预处理,功能提取和简单的机器学习模型。特别是,我们分析了线性模型和非线性(梯度提升)模型的性能。我们的方法超过了两个公共数据集上的最新方法(使用相同的数据):Sleep--EDF SC-20(MF1 0.810)和Sleep-eDF ST(MF1 0.795),同时在Sleep-eDF上取得了竞争成果SC-78(MF1 0.775)和质量SS3(MF1 0.817)。我们表明,对于睡眠阶段评分任务,工程特征向量的表现力与深度学习模型的内部学表现相当。该观察结果为临床采用打开了大门,因为代表性功能向量允许利用传统机器学习模型的可解释性和成功记录。
translated by 谷歌翻译
最近基于深度学习的临床决策支持系统的准确性是有希望的。但是,缺乏模型可解释性仍然是医疗保健中人工智能广泛采用的障碍。使用睡眠作为案例研究,我们提出了一种可推广的方法,将临床解释性与黑盒深度学习得出的高精度相结合。多聚词(PSG)的临床医生确定的睡眠阶段仍然是评估睡眠质量的金标准。但是,专家的PSG手册注释既昂贵又过时。我们建议使用嵌入式,规则和功能来读取PSG的农奴,可解释的睡眠分期。农奴通过从AASM手册中得出的有意义的特征来解释分类的睡眠阶段,用于睡眠和相关事件的评分。在农奴中,从卷积和复发性神经网络的混合体获得的嵌入被转移到可解释的特征空间。这些代表性的可解释功能用于训练简单的模型,例如浅决策树进行分类。模型结果将在两个公开可用的数据集上进行验证。农奴超过了可解释的睡眠分期的当前最新时间。 Serf使用梯度增压树作为分类器,在当前最新的黑盒模型的2%以内,获得了0.766 $ \ kappa $和0.870 AUC-ROC。
translated by 谷歌翻译
Seizure type identification is essential for the treatment and management of epileptic patients. However, it is a difficult process known to be time consuming and labor intensive. Automated diagnosis systems, with the advancement of machine learning algorithms, have the potential to accelerate the classification process, alert patients, and support physicians in making quick and accurate decisions. In this paper, we present a novel multi-path seizure-type classification deep learning network (MP-SeizNet), consisting of a convolutional neural network (CNN) and a bidirectional long short-term memory neural network (Bi-LSTM) with an attention mechanism. The objective of this study was to classify specific types of seizures, including complex partial, simple partial, absence, tonic, and tonic-clonic seizures, using only electroencephalogram (EEG) data. The EEG data is fed to our proposed model in two different representations. The CNN was fed with wavelet-based features extracted from the EEG signals, while the Bi-LSTM was fed with raw EEG signals to let our MP-SeizNet jointly learns from different representations of seizure data for more accurate information learning. The proposed MP-SeizNet was evaluated using the largest available EEG epilepsy database, the Temple University Hospital EEG Seizure Corpus, TUSZ v1.5.2. We evaluated our proposed model across different patient data using three-fold cross-validation and across seizure data using five-fold cross-validation, achieving F1 scores of 87.6% and 98.1%, respectively.
translated by 谷歌翻译
睡眠是一种基本的生理过程,对于维持健康的身心至关重要。临床睡眠监测的黄金标准是多核桃摄影(PSG),基于哪个睡眠可以分为五个阶段,包括尾脉冲睡眠(REM睡眠)/非REM睡眠1(N1)/非REM睡眠2 (n2)/非REM睡眠3(n3)。然而,PSG昂贵,繁重,不适合日常使用。对于长期睡眠监测,无处不在的感测可以是解决方案。最近,心脏和运动感测在分类三阶段睡眠方面变得流行,因为两种方式都可以从研究级或消费者级设备中获得(例如,Apple Watch)。但是,为最大准确性融合数据的最佳仍然是一个打开的问题。在这项工作中,我们综合地研究了深度学习(DL)的高级融合技术,包括三种融合策略,三个融合方法以及三级睡眠分类,基于两个公共数据集。实验结果表明,通过融合心脏/运动传感方式可以可靠地分类三阶段睡眠,这可能成为在睡眠中进行大规模睡眠阶段评估研究或长期自动跟踪的实用工具。为了加快普遍存在/可穿戴计算社区的睡眠研究的进展,我们制作了该项目开源,可以在:https://github.com/bzhai/ubi-sleepnet找到代码。
translated by 谷歌翻译
尽管最近对成人自动睡眠分期进行了巨大进展,但目前是未知的,如果最先进的算法概括为儿科人群,这在过夜多核心摄影(PSG)中显示出独特的特征。为了回答这个问题,在这项工作中,我们对儿科自动睡眠分期的最先进的深层学习方法进行了大规模比较研究。采用各种具有发散特征的六种不同的深神经网络的选择来评估超过1,200名儿童的样品,横跨宽度的阻塞性睡眠呼吸暂停(OSA)严重程度。我们的实验结果表明,在新科目评估时自动儿科睡眠滞高器的个性表现相当于在成人报告的专家级。将六个级别与集合模型相结合,进一步提高了暂存精度,达到了87.7%的整体准确性,一个0.837的Cohen的Kappa,在新科目评估时,单通道EEG的宏观F1分数为84.2%。当使用双通道EEG $ \ CDOT $ EOT时,达到88.8%的准确性,即0.852的精度,宏观F1分数为85.8%时,该性能进一步提高。同时,集合模型导致预测性不确定性降低。结果还表明,当训练和测试数据分开和临床干预后7个月记录7个月时,研究了算法及其集合对于概念漂移是强大的。详细分析进一步展示了自动分级彼此之间的“几乎完美”协议及其在分期错误上的类似模式。
translated by 谷歌翻译
准确的睡眠阶段分类对于睡眠健康评估很重要。近年来,已经开发了几种基于深度学习和机器学习的睡眠阶段算法,并且在人类注释方面取得了表现。尽管性能提高,但最深入学习算法的局限性是其黑盒行为,它限制了它们在临床环境中的使用。在这里,我们提出了跨模式变压器,这是一种基于变压器的睡眠阶段分类的方法。我们的模型通过最先进的方法实现了竞争性能,并通过利用注意模块的可解释性方面消除了深度学习模型的黑盒行为。提出的跨模式变压器由一种新型的跨模式变压器编码器结构以及多尺度的一维卷积神经网络组成,用于自动表示学习。基于此设计的我们的睡眠阶段分类器能够以与最先进的方法相同或更好地达到睡眠阶段分类性能,以及可解释性,参数数量减少了四倍,并且比较培训时间减少了。到当前的最新。我们的代码可从https://github.com/jathurshan0330/cross-modal-transformer获得。
translated by 谷歌翻译
The classification of sleep stages plays a crucial role in understanding and diagnosing sleep pathophysiology. Sleep stage scoring relies heavily on visual inspection by an expert that is time consuming and subjective procedure. Recently, deep learning neural network approaches have been leveraged to develop a generalized automated sleep staging and account for shifts in distributions that may be caused by inherent inter/intra-subject variability, heterogeneity across datasets, and different recording environments. However, these networks ignore the connections among brain regions, and disregard the sequential connections between temporally adjacent sleep epochs. To address these issues, this work proposes an adaptive product graph learning-based graph convolutional network, named ProductGraphSleepNet, for learning joint spatio-temporal graphs along with a bidirectional gated recurrent unit and a modified graph attention network to capture the attentive dynamics of sleep stage transitions. Evaluation on two public databases: the Montreal Archive of Sleep Studies (MASS) SS3; and the SleepEDF, which contain full night polysomnography recordings of 62 and 20 healthy subjects, respectively, demonstrates performance comparable to the state-of-the-art (Accuracy: 0.867;0.838, F1-score: 0.818;0.774 and Kappa: 0.802;0.775, on each database respectively). More importantly, the proposed network makes it possible for clinicians to comprehend and interpret the learned connectivity graphs for sleep stages.
translated by 谷歌翻译
在脑电图(EEG)的驾驶员的背景下,设计无校准系统仍然具有挑战性,因为EEG信号在不同的主题和录音会话之间显着变化。已经努力使用EEG信号的深度学习方法来利用精神状态识别。然而,现有工作主要将深入学习模型视为黑匣子分类器,而模型已经学习的是什么以及它们在脑电图数据中受到噪声的影响仍然是曝光的。在本文中,我们开发了一种新颖的卷积神经网络,可以通过突出显示包含分类重要信息的输入样本的本地区域来解释其决定。该网络具有紧凑的结构,利用可分离卷曲来处理空间序列中的EEG信号。结果表明,该模型在11个受试者上实现了78.35%的平均准确性,用于休假交叉对象嗜睡识别,其高于传统的基线方法为53.4%-72.68%和最先进的深层学习方法63.90%-65.78%。可视化结果表明,该模型已经学会了识别EEG信号的生物学可解释的特征,例如,α主轴,作为不同受试者的嗜睡的强指标。此外,我们还探讨了一些错误分类的样本背后的原因,具有可视化技术,并讨论了提高识别准确性的潜在方法。我们的作品说明了使用可解释的深度学习模型的有希望的方向,以从复杂的EEG信号发现与不同心理状态相关的有意义的模式。
translated by 谷歌翻译
AASM准则是为了有一种常用的方法,旨在标准化睡眠评分程序的数十年努力的结果。该指南涵盖了从技术/数字规格(例如,推荐的EEG推导)到相应的详细睡眠评分规则到年龄的几个方面。在睡眠评分自动化的背景下,与许多其他技术相比,深度学习表现出更好的性能。通常,临床专业知识和官方准则对于支持自动睡眠评分算法在解决任务时至关重要。在本文中,我们表明,基于深度学习的睡眠评分算法可能不需要充分利用临床知识或严格遵循AASM准则。具体而言,我们证明了U-Sleep是一种最先进的睡眠评分算法,即使使用临床非申请或非规定派生,也可以解决得分任务,即使无需利用有关有关的信息,也无需利用有关有关的信息。受试者的年代年龄。我们最终加强了一个众所周知的发现,即使用来自多个数据中心的数据始终导致与单个队列上的培训相比,可以使性能更好。确实,我们表明,即使增加了单个数据队列的大小和异质性,后者仍然有效。在我们的所有实验中,我们使用了来自13个不同临床研究的28528多个多摄影研究研究。
translated by 谷歌翻译
研究目标:评分多个词法中的绩效差异是一个众所周知的问题。大多数现有的自动睡眠评分系统都是使用单个得分手注释的标签培训的,该标签将主观评估转移到模型中。当有两个或多个得分手的注释可用时,评分模型通常会在得分手共识上训练。平均得分手的主观性被转移到模型中,失去了有关不同得分子之间内部变异性的信息。在这项研究中,我们旨在将不同医生的多重知识插入培训程序中。目标是优化模型培训,利用可以从一组得分手共识中提取的全部信息。方法:我们在三个不同的多得分数据库上训练两个基于深度学习的模型。我们将标签平滑技术与软传感器(LSSC)分布一起利用,以在模型的训练过程中插入多重知识。我们介绍了平均余弦相似性度量(ACS),以量化模型与LSSC产生的催眠密度毛电和得分手共识产生的催眠密度图之间的相似性。结果:当我们使用LSSC训练模型时,模型的性能会改善所有数据库。我们发现,通过LSSC训练的模型和共识产生的催眠仪型的催眠刻画之间的ACS增加(高达6.4%)。结论:我们的方法绝对使模型能够更好地适应得分手的共识。未来的工作将集中于对不同评分体系结构的进一步调查。
translated by 谷歌翻译
在神经科学领域,脑活动分析总是被认为是一个重要领域。精神分裂症(SZ)是一种严重影响世界各地人民的思想,行为和情感的大脑障碍。在Sz检测中被证明是一种有效的生物标志物的脑电图(EEG)。由于其非线性结构,EEG是非线性时间序列信号,并利用其进行调查,这是对其的影响。本文旨在利用深层学习方法提高基于EEG基于SZ检测的性能。已经提出了一种新的混合深度学习模型(精神分裂症混合神经网络),已经提出了卷积神经网络(CNN)和长短期存储器(LSTM)的组合。 CNN网络用于本地特征提取,LSTM已用于分类。所提出的模型仅与CNN,仅限LSTM和基于机器学习的模型进行了比较。已经在两个不同的数据集上进行了评估所有模型,其中数据集1由19个科目和数据集2组成,由16个科目组成。使用不同频带上的各种参数设置并在头皮上使用不同的电极组来进行几个实验。基于所有实验,显然提出的混合模型(SZHNN)与其他现有型号相比,拟议的混合模型(SZHNN)提供了99.9%的最高分类精度。该建议的模型克服了不同频带的影响,甚至没有5个电极显示出91%的更好的精度。该拟议的模型也在智能医疗保健和远程监控应用程序的医疗器互联网上进行评估。
translated by 谷歌翻译
传统的脑电脑接口(BCI)需要在使用之前为每个用户提供完整的数据收集,训练和校准阶段。近年来,已经开发了许多主题独立的(SI)BCI。与受试者依赖性(SD)方法相比,这些方法中的许多方法产生较弱的性能,有些方法是计算昂贵的。潜在的真实世界应用程序将极大地受益于更准确,紧凑,并计算高效的主题的BCI。在这项工作中,我们提出了一个名为CCSPNET(卷积公共空间模式网络)的新型主题独立的BCI框架,该框架被训练在大型脑电图(EEG)信号数据库中的电动机图像(MI)范例上,由400个试验组成每54名科目执行两班手机MI任务。所提出的框架应用小波核卷积神经网络(WKCNN)和时间卷积神经网络(TCNN),以表示和提取EEG信号的光谱特征。对于空间特征提取来实现公共空间模式(CSP)算法,并且通过密集的神经网络减少了CSP特征的数量。最后,类标签由线性判别分析(LDA)分类器确定。 CCSPNET评估结果表明,可以具有紧凑的BCI,可实现与复杂和计算昂贵的模型相当的SD和SI最先进的性能。
translated by 谷歌翻译
目的:提出使用深神经网络(DNN)的新型SSVEP分类方法,提高单通道和用户独立的脑电电脑接口(BCIS)的性能,具有小的数据长度。方法:我们建议与DNN结合使用过滤器组(创建EEG信号的子带分量)。在这种情况下,我们创建了三种不同的模型:经常性的神经网络(FBRNN)分析时域,2D卷积神经网络(FBCNN-2D)处理复谱特征和3D卷积神经网络(FBCNN-3D)分析复杂谱图,我们在本研究中介绍了SSVEP分类的可能输入。我们通过开放数据集培训了我们的神经网络,并构思了它们,以便不需要从最终用户校准:因此,测试主题数据与训练和验证分开。结果:带滤波器银行的DNN超越了类似网络的准确性,在没有相当大的边距(高达4.6%)的情况下,它们甚至更高的边距(高达7.1%)超越了常见的SSVEP分类方法(SVM和FBCCA) 。在使用过滤器银行中的三个DNN中,FBRNN获得了最佳结果,然后是FBCNN-3D,最后由FBCNN-2D获得。结论和意义:滤波器银行允许不同类型的深神经网络,以更有效地分析SSVEP的谐波分量。复谱图比复杂频谱特征和幅度谱进行更多信息,允许FBCNN-3D超越另一个CNN。在具有挑战性的分类问题中获得的平均测试精度(87.3%)和F1分数(0.877)表示施工,经济,快速和低延迟BCIS建设的强大潜力。
translated by 谷歌翻译
基于电动机图像(MI)的脑电脑界面(BCIS)允许通过解码神经生理现象来控制几种应用,这些现象通常通过使用非侵入性技术被脑电图(EEG)记录。尽管在基于MI的BCI的进展方面很大,但脑电图有特定于受试者和各种变化随时间。这些问题指出了提高分类绩效的重大挑战,特别是在独立的方式。为了克服这些挑战,我们提出了Min2Net,这是一个新的端到端多任务学习来解决这项任务。我们将深度度量学习集成到多任务AutoEncoder中,以从脑电图中学习紧凑且识别的潜在表示,并同时执行分类。这种方法降低了预处理的复杂性,导致EEG分类的显着性能改善。实验结果以本语独立的方式表明,MIN2Net优于最先进的技术,在SMR-BCI和OpenBMI数据集中分别实现了6.72%的F1分数提高,以及2.23%。我们证明MIN2NET在潜在代表中提高了歧视信息。本研究表明使用此模型的可能性和实用性为新用户开发基于MI的BCI应用,而无需校准。
translated by 谷歌翻译
在过去的几年中,深度学习用于脑电图(EEG)分类任务一直在迅速增长,但其应用程序受到EEG数据集相对较小的限制。数据扩展包括在培训过程中人为地增加数据集的大小,它一直是在计算机视觉或语音等应用程序中获得最新性能的关键要素。尽管文献中已经提出了一些脑电图数据的增强转换,但它们对跨任务的绩效的积极影响仍然难以捉摸。在这项工作中,我们提出了对主要现有脑电图增强的统一和详尽的分析,该分析在常见的实验环境中进行了比较。我们的结果强调了为睡眠阶段分类和大脑计算机界面界面的最佳数据增强,在某些情况下显示预测功率改善大于10%。
translated by 谷歌翻译
工作记忆(WM)表示在脑海中存储的信息,是人类认知领域的一个基本研究主题。可以监测大脑的电活动的脑电图(EEG)已被广泛用于测量WM的水平。但是,关键的挑战之一是个体差异可能会导致无效的结果,尤其是当既定模型符合陌生主题时。在这项工作中,我们提出了一个具有空间注意力(CS-DASA)的跨主题深层适应模型,以概括跨科目的工作负载分类。首先,我们将EEG时间序列转换为包含空间,光谱和时间信息的多帧EEG图像。首先,CS-DASA中的主题共享模块从源和目标主题中接收多帧的EEG图像数据,并学习了共同的特征表示。然后,在特定于主题的模块中,实现了最大平均差异,以测量重现的内核希尔伯特空间中的域分布差异,这可以为域适应增加有效的罚款损失。此外,采用主题对象的空间注意机制专注于目标图像数据的判别空间特征。在包含13个受试者的公共WM EEG数据集上进行的实验表明,所提出的模型能够达到比现有最新方法更好的性能。
translated by 谷歌翻译