这项工作在拆分计算领域迈出了重大步骤,即如何拆分深神经网络以将其早期部分托管在嵌入式设备上,而其余则在服务器上。到目前为止,已经确定了潜在的分裂位置,以利用独特的建筑方面,即基于层尺寸。在此范式下,只有在执行分裂并重新训练整个管道后,才能评估分裂的疗效,从而对所有合理的分裂点在时间方面进行详尽的评估。在这里,我们表明,不仅层的结构确实很重要,而且其中包含的神经元的重要性也很重要。如果神经元相对于正确的班级决策,神经元很重要。因此,应在具有高密度的重要神经元的层后立即施加拆分,以保留流动的信息。根据这个想法,我们提出了可解释的拆分(i-split):通过提供有关该分型在分类准确性方面的表现,事先对其有效实现的可靠性,以确定最合适的分裂点的过程。作为I-Split的另一个重大贡献,我们表明,多类分类问题的分裂点的最佳选择还取决于网络必须处理的特定类别。详尽的实验已在两个网络(VGG16和Resnet-50)以及三个数据集(Tiny-Imagenet-200,Notmnist和胸部X射线肺炎)上进行。源代码可在https://github.com/vips4/i-split上获得。
translated by 谷歌翻译
传统的自动门不能区分希望穿过门和经过门的人们,因此他们经常不必要地打开。这导致需要在商业和非商业环境中采用新系统:智能门。特别是,智能门系统根据周围环境的社会环境预测了门附近的人们的意图,然后就是否打开门做出合理的决定。这项工作提出了与智能门有关的第一张纸张,没有铃铛和哨子。我们首先指出,问题不仅涉及可靠性,气候控制,安全性和操作方式。的确,通过对近亲学和场景推理的复杂结合分析,一种预测门附近人们意图的系统还涉及对场景的社会背景的更深入了解。此外,我们对自动门进行了详尽的文献综述,提供了一种新型的系统配方。此外,我们对智能门的未来应用,道德缺陷的描述和立法问题进行了分析。
translated by 谷歌翻译
We present a Machine Learning (ML) study case to illustrate the challenges of clinical translation for a real-time AI-empowered echocardiography system with data of ICU patients in LMICs. Such ML case study includes data preparation, curation and labelling from 2D Ultrasound videos of 31 ICU patients in LMICs and model selection, validation and deployment of three thinner neural networks to classify apical four-chamber view. Results of the ML heuristics showed the promising implementation, validation and application of thinner networks to classify 4CV with limited datasets. We conclude this work mentioning the need for (a) datasets to improve diversity of demographics, diseases, and (b) the need of further investigations of thinner models to be run and implemented in low-cost hardware to be clinically translated in the ICU in LMICs. The code and other resources to reproduce this work are available at https://github.com/vital-ultrasound/ai-assisted-echocardiography-for-low-resource-countries.
translated by 谷歌翻译
Early on during a pandemic, vaccine availability is limited, requiring prioritisation of different population groups. Evaluating vaccine allocation is therefore a crucial element of pandemics response. In the present work, we develop a model to retrospectively evaluate age-dependent counterfactual vaccine allocation strategies against the COVID-19 pandemic. To estimate the effect of allocation on the expected severe-case incidence, we employ a simulation-assisted causal modelling approach which combines a compartmental infection-dynamics simulation, a coarse-grained, data-driven causal model and literature estimates for immunity waning. We compare Israel's implemented vaccine allocation strategy in 2021 to counterfactual strategies such as no prioritisation, prioritisation of younger age groups or a strict risk-ranked approach; we find that Israel's implemented strategy was indeed highly effective. We also study the marginal impact of increasing vaccine uptake for a given age group and find that increasing vaccinations in the elderly is most effective at preventing severe cases, whereas additional vaccinations for middle-aged groups reduce infections most effectively. Due to its modular structure, our model can easily be adapted to study future pandemics. We demonstrate this flexibility by investigating vaccine allocation strategies for a pandemic with characteristics of the Spanish Flu. Our approach thus helps evaluate vaccination strategies under the complex interplay of core epidemic factors, including age-dependent risk profiles, immunity waning, vaccine availability and spreading rates.
translated by 谷歌翻译
One of today's goals for industrial robot systems is to allow fast and easy provisioning for new tasks. Skill-based systems that use planning and knowledge representation have long been one possible answer to this. However, especially with contact-rich robot tasks that need careful parameter settings, such reasoning techniques can fall short if the required knowledge not adequately modeled. We show an approach that provides a combination of task-level planning and reasoning with targeted learning of skill parameters for a task at hand. Starting from a task goal formulated in PDDL, the learnable parameters in the plan are identified and an operator can choose reward functions and parameters for the learning process. A tight integration with a knowledge framework allows to form a prior for learning and the usage of multi-objective Bayesian optimization eases to balance aspects such as safety and task performance that can often affect each other. We demonstrate the efficacy and versatility of our approach by learning skill parameters for two different contact-rich tasks and show their successful execution on a real 7-DOF KUKA-iiwa.
translated by 谷歌翻译
Objective: Thigh muscle group segmentation is important for assessment of muscle anatomy, metabolic disease and aging. Many efforts have been put into quantifying muscle tissues with magnetic resonance (MR) imaging including manual annotation of individual muscles. However, leveraging publicly available annotations in MR images to achieve muscle group segmentation on single slice computed tomography (CT) thigh images is challenging. Method: We propose an unsupervised domain adaptation pipeline with self-training to transfer labels from 3D MR to single CT slice. First, we transform the image appearance from MR to CT with CycleGAN and feed the synthesized CT images to a segmenter simultaneously. Single CT slices are divided into hard and easy cohorts based on the entropy of pseudo labels inferenced by the segmenter. After refining easy cohort pseudo labels based on anatomical assumption, self-training with easy and hard splits is applied to fine tune the segmenter. Results: On 152 withheld single CT thigh images, the proposed pipeline achieved a mean Dice of 0.888(0.041) across all muscle groups including sartorius, hamstrings, quadriceps femoris and gracilis. muscles Conclusion: To our best knowledge, this is the first pipeline to achieve thigh imaging domain adaptation from MR to CT. The proposed pipeline is effective and robust in extracting muscle groups on 2D single slice CT thigh images.The container is available for public use at https://github.com/MASILab/DA_CT_muscle_seg
translated by 谷歌翻译
In this paper, we propose the first-ever real benchmark thought for evaluating Neural Radiance Fields (NeRFs) and, in general, Neural Rendering (NR) frameworks. We design and implement an effective pipeline for scanning real objects in quantity and effortlessly. Our scan station is built with less than 500$ hardware budget and can collect roughly 4000 images of a scanned object in just 5 minutes. Such a platform is used to build ScanNeRF, a dataset characterized by several train/val/test splits aimed at benchmarking the performance of modern NeRF methods under different conditions. Accordingly, we evaluate three cutting-edge NeRF variants on it to highlight their strengths and weaknesses. The dataset is available on our project page, together with an online benchmark to foster the development of better and better NeRFs.
translated by 谷歌翻译
Recent approaches to drape garments quickly over arbitrary human bodies leverage self-supervision to eliminate the need for large training sets. However, they are designed to train one network per clothing item, which severely limits their generalization abilities. In our work, we rely on self-supervision to train a single network to drape multiple garments. This is achieved by predicting a 3D deformation field conditioned on the latent codes of a generative network, which models garments as unsigned distance fields. Our pipeline can generate and drape previously unseen garments of any topology, whose shape can be edited by manipulating their latent codes. Being fully differentiable, our formulation makes it possible to recover accurate 3D models of garments from partial observations -- images or 3D scans -- via gradient descent. Our code will be made publicly available.
translated by 谷歌翻译
This paper proposes a new algorithm for an automatic variable selection procedure in High Dimensional Graphical Models. The algorithm selects the relevant variables for the node of interest on the basis of mutual information. Several contributions in literature have investigated the use of mutual information in selecting the appropriate number of relevant features in a large data-set, but most of them have focused on binary outcomes or required high computational effort. The algorithm here proposed overcomes these drawbacks as it is an extension of Chow and Liu's algorithm. Once, the probabilistic structure of a High Dimensional Graphical Model is determined via the said algorithm, the best path-step, including variables with the most explanatory/predictive power for a variable of interest, is determined via the computation of the entropy coefficient of determination. The latter, being based on the notion of (symmetric) Kullback-Leibler divergence, turns out to be closely connected to the mutual information of the involved variables. The application of the algorithm to a wide range of real-word and publicly data-sets has highlighted its potential and greater effectiveness compared to alternative extant methods.
translated by 谷歌翻译
Word embeddings play a significant role in today's Natural Language Processing tasks and applications. While pre-trained models may be directly employed and integrated into existing pipelines, they are often fine-tuned to better fit with specific languages or domains. In this paper, we attempt to improve available embeddings in the uncovered niche of the Italian medical domain through the combination of Contrastive Learning (CL) and Knowledge Graph Embedding (KGE). The main objective is to improve the accuracy of semantic similarity between medical terms, which is also used as an evaluation task. Since the Italian language lacks medical texts and controlled vocabularies, we have developed a specific solution by combining preexisting CL methods (multi-similarity loss, contextualization, dynamic sampling) and the integration of KGEs, creating a new variant of the loss. Although without having outperformed the state-of-the-art, represented by multilingual models, the obtained results are encouraging, providing a significant leap in performance compared to the starting model, while using a significantly lower amount of data.
translated by 谷歌翻译