这项工作在拆分计算领域迈出了重大步骤,即如何拆分深神经网络以将其早期部分托管在嵌入式设备上,而其余则在服务器上。到目前为止,已经确定了潜在的分裂位置,以利用独特的建筑方面,即基于层尺寸。在此范式下,只有在执行分裂并重新训练整个管道后,才能评估分裂的疗效,从而对所有合理的分裂点在时间方面进行详尽的评估。在这里,我们表明,不仅层的结构确实很重要,而且其中包含的神经元的重要性也很重要。如果神经元相对于正确的班级决策,神经元很重要。因此,应在具有高密度的重要神经元的层后立即施加拆分,以保留流动的信息。根据这个想法,我们提出了可解释的拆分(i-split):通过提供有关该分型在分类准确性方面的表现,事先对其有效实现的可靠性,以确定最合适的分裂点的过程。作为I-Split的另一个重大贡献,我们表明,多类分类问题的分裂点的最佳选择还取决于网络必须处理的特定类别。详尽的实验已在两个网络(VGG16和Resnet-50)以及三个数据集(Tiny-Imagenet-200,Notmnist和胸部X射线肺炎)上进行。源代码可在https://github.com/vips4/i-split上获得。
translated by 谷歌翻译
Recently, increasing attention has been drawn to the internal mechanisms of convolutional neural networks, and the reason why the network makes specific decisions. In this paper, we develop a novel post-hoc visual explanation method called Score-CAM based on class activation mapping. Unlike previous class activation mapping based approaches, Score-CAM gets rid of the dependence on gradients by obtaining the weight of each activation map through its forward passing score on target class, the final result is obtained by a linear combination of weights and activation maps. We demonstrate that Score-CAM achieves better visual performance and fairness for interpreting the decision making process. Our approach outperforms previous methods on both recognition and localization tasks, it also passes the sanity check. We also indicate its application as debugging tools. The implementation is available 1 .
translated by 谷歌翻译
诸如智能手机和自治车辆的移动设备越来越依赖深神经网络(DNN)来执行复杂的推理任务,例如图像分类和语音识别等。但是,在移动设备上连续执行整个DNN可以快速消耗其电池。虽然任务卸载到云/边缘服务器可能会降低移动设备的计算负担,但信道质量,网络和边缘服务器负载中的不稳定模式可能导致任务执行的显着延迟。最近,已经提出了基于分割计算(SC)的方法,其中DNN被分成在移动设备上和边缘服务器上执行的头部和尾模型。最终,这可能会降低带宽使用以及能量消耗。另一种叫做早期退出(EE)的方法,列车模型在架构中呈现多个“退出”,每个都提供越来越高的目标准确性。因此,可以根据当前条件或应用需求进行准确性和延迟之间的权衡。在本文中,我们通过呈现最相关方法的比较,对SC和EE策略进行全面的综合调查。我们通过提供一系列引人注目的研究挑战来结束论文。
translated by 谷歌翻译
尽管关键任务应用需要使用深神经网络(DNN),但它们在移动设备的连续执行导致能耗的显着增加。虽然边缘卸载可以降低能量消耗,但信道质量,网络和边缘服务器负载中的不稳定模式可能导致系统的关键操作严重中断。一种被称为分割计算的替代方法,在模型中生成压缩表示(称为“瓶颈”),以降低带宽使用和能量消耗。事先工作已经提出了引入额外层的方法,以损害能耗和潜伏期。因此,我们提出了一个名为BoleFit的新框架,除了有针对性的DNN架构修改之外,还包括一种新颖的培训策略,即使具有强大的压缩速率,即使具有强大的压缩速率也能实现高精度。我们在图像分类中施加瓶装装饰品,并显示瓶装装备在想象中数据集中实现了77.1%的数据压缩,高达0.6%的精度损耗,而诸如Spinn的最佳精度高达6%。我们通过实验测量在NVIDIA Jetson Nano板(基于GPU)和覆盆子PI板上运行的图像分类应用的功耗和等待时间(GPU - 更低)。我们表明,对于(W.R.T.)本地计算分别降低了高达49%和89%的功耗和延迟,局部计算和37%和55%W.r.t.t.边缘卸载。我们还比较了具有基于最先进的自动化器的方法的瓶装方法,并显示了(i)瓶子分别将功耗和执行时间降低了高达54%和44%,覆盆子上的40%和62% pi; (ii)在移动设备上执行的头部模型的大小为83倍。代码存储库将被公布以获得结果的完全可重复性。
translated by 谷歌翻译
深神经网络(DNN)的黑盒性质严重阻碍了其在特定场景中的性能改善和应用。近年来,基于类激活映射的方法已被广泛用于解释计算机视觉任务中模型的内部决策。但是,当此方法使用反向传播获得梯度时,它将在显着图中引起噪声,甚至找到与决策无关的特征。在本文中,我们提出了一个基于绝对价值类激活映射(ABS-CAM)方法,该方法优化了从反向传播中得出的梯度,并将所有这些梯度变成正梯度,以增强输出神经元激活的视觉特征,并改善。显着图的本地化能力。 ABS-CAM的框架分为两个阶段:生成初始显着性图并生成最终显着图。第一阶段通过优化梯度来提高显着性图的定位能力,第二阶段将初始显着性图与原始图像线性结合在一起,以增强显着性图的语义信息。我们对拟议方法进行定性和定量评估,包括删除,插入和指向游戏。实验结果表明,ABS-CAM显然可以消除显着性图中的噪声,并且可以更好地定位与决策相关的功能,并且优于以前的识别和定位任务中的方法。
translated by 谷歌翻译
解释深度卷积神经网络最近引起了人们的关注,因为它有助于了解网络的内部操作以及为什么它们做出某些决定。显着地图强调了与网络决策的主要连接的显着区域,是可视化和分析计算机视觉社区深层网络的最常见方法之一。但是,由于未经证实的激活图权重的建议,这些图像没有稳固的理论基础,并且未能考虑每个像素之间的关系,因此现有方法生成的显着图不能表示图像中的真实信息。在本文中,我们开发了一种基于类激活映射的新型事后视觉解释方法,称为Shap-Cam。与以前的基于梯度的方法不同,Shap-Cam通过通过Shapley值获得每个像素的重要性来摆脱对梯度的依赖。我们证明,Shap-Cam可以在解释决策过程中获得更好的视觉性能和公平性。我们的方法在识别和本地化任务方面的表现优于以前的方法。
translated by 谷歌翻译
卷积神经网络(CNN)成为计算机视觉最受欢迎和最突出的深度学习体系结构之一,但其黑匣子功能隐藏了内部预测过程。因此,AI从业者阐明了可解释的AI,以提供模型行为的解释性。特别是,基于类的激活图(CAM)和基于GRAD-CAM的方法已显示出希望结果,但它们具有架构限制或梯度计算负担。为了解决这些问题,已建议将得分摄像机作为一种无梯度方法,但是,与基于CAM或GRAD-CAM的方法相比,它需要更多的执行时间。因此,我们通过空间掩盖提取的特征图来利用激活图和网络输出之间的相关性,提出了一个轻巧的体系结构和无梯度的互惠凸轮(配克CAM)。通过提出的方法,与平均跌落 - 相干 - 复杂性(ADCC)度量相比,Resnet家族中的1:78-3:72%的收益不包括VGG-16(1:39%)(1:39%) )。此外,配置摄像头表现出与Grad-CAM相似的显着性图生成速率,并且比Score-CAM快于148倍。
translated by 谷歌翻译
可解释的人工智能(XAI)的新兴领域旨在为当今强大但不透明的深度学习模型带来透明度。尽管本地XAI方法以归因图的形式解释了个体预测,从而确定了重要特征的发生位置(但没有提供有关其代表的信息),但全局解释技术可视化模型通常学会的编码的概念。因此,两种方法仅提供部分见解,并留下将模型推理解释的负担。只有少数当代技术旨在将本地和全球XAI背后的原则结合起来,以获取更多信息的解释。但是,这些方法通常仅限于特定的模型体系结构,或对培训制度或数据和标签可用性施加其他要求,这实际上使事后应用程序成为任意预训练的模型。在这项工作中,我们介绍了概念相关性传播方法(CRP)方法,该方法结合了XAI的本地和全球观点,因此允许回答“何处”和“ where”和“什么”问题,而没有其他约束。我们进一步介绍了相关性最大化的原则,以根据模型对模型的有用性找到代表性的示例。因此,我们提高了对激活最大化及其局限性的共同实践的依赖。我们证明了我们方法在各种环境中的能力,展示了概念相关性传播和相关性最大化导致了更加可解释的解释,并通过概念图表,概念组成分析和概念集合和概念子区和概念子区和概念子集和定量研究对模型的表示和推理提供了深刻的见解。它们在细粒度决策中的作用。
translated by 谷歌翻译
Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without sacrificing application accuracy or increasing hardware cost are critical to the wide deployment of DNNs in AI systems.This article aims to provide a comprehensive tutorial and survey about the recent advances towards the goal of enabling efficient processing of DNNs. Specifically, it will provide an overview of DNNs, discuss various hardware platforms and architectures that support DNNs, and highlight key trends in reducing the computation cost of DNNs either solely via hardware design changes or via joint hardware design and DNN algorithm changes. It will also summarize various development resources that enable researchers and practitioners to quickly get started in this field, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of DNN hardware designs, optionally including algorithmic co-designs, being proposed in academia and industry.The reader will take away the following concepts from this article: understand the key design considerations for DNNs; be able to evaluate different DNN hardware implementations with benchmarks and comparison metrics; understand the trade-offs between various hardware architectures and platforms; be able to evaluate the utility of various DNN design techniques for efficient processing; and understand recent implementation trends and opportunities.
translated by 谷歌翻译
在本文中,我们在卷积神经网络(CNNS)的不断扩大性文献中介绍了一个新问题。虽然以前的工作侧重于如何在视觉解释CNNS的问题上,但我们问我们关心解释的是什么,即哪些层和神经元值得我们关注?由于巨大的现代深度学习网络架构,自动化,定量方法需要对神经元的相对重要性进行排名,以便为此问题提供答案。我们提出了一种新的统计方法,用于在网络的任何卷积层中排名隐藏的神经元。我们将重要性定义为激活映射与类分数之间的最大相关性。我们提供了不同的方式,其中该方法可用于可视化与Mnist和Imagenet的目的,并显示我们对街道级图像的空气污染预测方法的真实应用。
translated by 谷歌翻译
由于其计算资源有限,在物联网和移动设备上部署深层神经网络(DNN)是一项艰巨的任务。因此,苛刻的任务通常完全被卸载到可以加速推理的边缘服务器上,但是,这也会导致沟通成本并唤起隐私问题。此外,这种方法使端设备的计算能力未使用。拆分计算是一个范式,其中DNN分为两个部分。第一部分是在终点设备上执行的,并且输出将传输到执行最终部分的边缘服务器。在这里,我们介绍动态拆分计算,其中最佳拆分位置是根据通信通道的状态动态选择的。通过使用现代DNN体系结构中已经存在的天然瓶颈,动态拆分计算避免了再培训和超参数优化,并且对DNN的最终准确性没有任何负面影响。通过广泛的实验,我们表明动态拆分计算在数据速率和服务器负载随时间变化的边缘计算环境中的推断速度更快。
translated by 谷歌翻译
While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation, and the vision of the Internet of Things fuel the interest in resource-efficient approaches. These approaches aim for a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. The development of such approaches is among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology from a scientific environment with virtually unlimited computing resources into everyday's applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. In particular, we focus on deep neural networks (DNNs), the predominant machine learning models of the past decade. We give a comprehensive overview of the vast literature that can be mainly split into three non-mutually exclusive categories: (i) quantized neural networks, (ii) network pruning, and (iii) structural efficiency. These techniques can be applied during training or as post-processing, and they are widely used to reduce the computational demands in terms of memory footprint, inference speed, and energy efficiency. We also briefly discuss different concepts of embedded hardware for DNNs and their compatibility with machine learning techniques as well as potential for energy and latency reduction. We substantiate our discussion with experiments on well-known benchmark datasets using compression techniques (quantization, pruning) for a set of resource-constrained embedded systems, such as CPUs, GPUs and FPGAs. The obtained results highlight the difficulty of finding good trade-offs between resource efficiency and predictive performance.
translated by 谷歌翻译
随着深度神经网络的兴起,解释这些网络预测的挑战已经越来越识别。虽然存在许多用于解释深度神经网络的决策的方法,但目前没有关于如何评估它们的共识。另一方面,鲁棒性是深度学习研究的热门话题;但是,在最近,几乎没有谈论解释性。在本教程中,我们首先呈现基于梯度的可解释性方法。这些技术使用梯度信号来分配对输入特征的决定的负担。后来,我们讨论如何为其鲁棒性和对抗性的鲁棒性在具有有意义的解释中扮演的作用来评估基于梯度的方法。我们还讨论了基于梯度的方法的局限性。最后,我们提出了在选择解释性方法之前应检查的最佳实践和属性。我们结束了未来在稳健性和解释性融合的地区研究的研究。
translated by 谷歌翻译
拆分计算已成为实现基于DNN的AI工作负载的最新范例,其中DNN模型分为两个部分,其中一个是在移动/客户端设备上执行的,另一部分是在边缘服务器(或cloud)上执行的。 。数据压缩适用于需要传输的DNN的中间张量,以应对优化速率准确性复杂性权衡的挑战。现有的拆分计算方法采用基于ML的数据压缩,但要求将整个DNN模型的参数(或其中的大部分)用于不同的压缩级别。这会产生高的计算和存储负担:训练从头开始的完整DNN模型在计算上是要求的,维持DNN参数的多个副本会增加存储要求,并在推断期间切换全套权重增加内存带宽。在本文中,我们提出了一种解决所有这些挑战的方法。它涉及瓶颈单元的系统设计和训练 - 简单,低成本的神经网络 - 可以在分裂点插入。与现有方法相比,在训练和推理期间,在训练和推理期间,高效和储存额的一小部分,我们的方法都非常轻巧。
translated by 谷歌翻译
由于其灵活性和适应性,深度学习已成为技术和业务领域的一定大小的解决方案。它是使用不透明模型实施的,不幸的是,这破坏了结果的可信度。为了更好地了解系统的行为,尤其是由时间序列驱动的系统的行为,在深度学习模型中,所谓的可解释的人工智能(XAI)方法是重要的。时间序列数据有两种主要类型的XAI类型,即模型不可屈服和特定于模型。在这项工作中考虑了模型特定的方法。尽管其他方法采用了类激活映射(CAM)或注意机制,但我们将两种策略合并为单个系统,简称为时间加权的时空可解释的多元时间序列(TSEM)。 TSEM结合了RNN和CNN模型的功能,使RNN隐藏单元被用作CNN具有暂时轴的注意力权重。结果表明TSEM优于XCM。就准确性而言,它与Stam相似,同时还满足了许多解释性标准,包括因果关系,忠诚度和时空性。
translated by 谷歌翻译
使用深度学习模型从组织学数据中诊断癌症提出了一些挑战。这些图像中关注区域(ROI)的癌症分级和定位通常依赖于图像和像素级标签,后者需要昂贵的注释过程。深度弱监督的对象定位(WSOL)方法为深度学习模型的低成本培训提供了不同的策略。仅使用图像级注释,可以训练这些方法以对图像进行分类,并为ROI定位进行分类类激活图(CAM)。本文综述了WSOL的​​最先进的DL方法。我们提出了一种分类法,根据模型中的信息流,将这些方法分为自下而上和自上而下的方法。尽管后者的进展有限,但最近的自下而上方法目前通过深层WSOL方法推动了很多进展。早期作品的重点是设计不同的空间合并功能。但是,这些方法达到了有限的定位准确性,并揭示了一个主要限制 - 凸轮的不足激活导致了高假阴性定位。随后的工作旨在减轻此问题并恢复完整的对象。评估和比较了两个具有挑战性的组织学数据集的分类和本地化准确性,对我们的分类学方法进行了评估和比较。总体而言,结果表明定位性能差,特别是对于最初设计用于处理自然图像的通用方法。旨在解决组织学数据挑战的方法产生了良好的结果。但是,所有方法都遭受高假阳性/阴性定位的影响。在组织学中应用深WSOL方法的应用是四个关键的挑战 - 凸轮的激活下/过度激活,对阈值的敏感性和模型选择。
translated by 谷歌翻译
We propose a technique for producing 'visual explanations' for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent and explainable.Our approach -Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say 'dog' in a classification network or a sequence of words in captioning network) flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept.Unlike previous approaches, Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fullyconnected layers (e.g. VGG), (2) CNNs used for structured outputs (e.g. captioning), (3) CNNs used in tasks with multimodal inputs (e.g. visual question answering) or reinforcement learning, all without architectural changes or re-training. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative vi-
translated by 谷歌翻译
采用注意机制的普遍性引起了人们对注意力分布的解释性的关注。尽管它提供了有关模型如何运行的见解,但由于对模型预测的解释仍然非常怀疑,但它利用了注意力。社区仍在寻求更容易解释的策略,以更好地识别最终决定最大的本地活跃地区。为了提高现有注意模型的解释性,我们提出了一种新型的双线性代表性非参数注意(BR-NPA)策略,该策略捕获了与任务相关的人类解剖信息。目标模型首先要蒸馏以具有高分辨率中间特征图。然后,根据本地成对特征相似性将代表性特征分组,以产生更精确的,更精确的注意力图,突出显示输入的任务相关部分。获得的注意图根据化合物特征的活性水平进行对,该功能提供了有关突出显示区域的重要水平的信息。提出的模型可以很容易地在涉及分类的各种现代深层模型中进行调整。与最先进的注意力模型和可视化方法相比,广泛的定量和定性实验显示了更全面和准确的视觉解释,以及跨多个任务的可视化方法,包括细粒度的图像分类,很少的射击分类和人重新识别,而无需损害该方法分类精度。提出的可视化模型急切地阐明了神经网络如何在不同任务中以不同的方式“注意他们的注意力”。
translated by 谷歌翻译
深度学习的显着成功引起了人们对医学成像诊断的应用的兴趣。尽管最新的深度学习模型在分类不同类型的医学数据方面已经达到了人类水平的准确性,但这些模型在临床工作流程中几乎不采用,这主要是由于缺乏解释性。深度学习模型的黑盒子性提出了制定策略来解释这些模型的决策过程的必要性,从而导致了可解释的人工智能(XAI)主题的创建。在这种情况下,我们对应用于医学成像诊断的XAI进行了详尽的调查,包括视觉,基于示例和基于概念的解释方法。此外,这项工作回顾了现有的医学成像数据集和现有的指标,以评估解释的质量。此外,我们还包括一组基于报告生成的方法的性能比较。最后,还讨论了将XAI应用于医学成像以及有关该主题的未来研究指示的主要挑战。
translated by 谷歌翻译
在几个机器学习应用领域,包括可解释的AI和弱监督的对象检测和细分,高质量的显着性图至关重要。已经开发了许多技术来使用神经网络提高显着性。但是,它们通常仅限于特定的显着性可视化方法或显着性问题。我们提出了一种新型的显着性增强方法,称为SESS(通过缩放和滑动增强显着性)。这是对现有显着性图生成方法的方法和模型不可或缺的扩展。借助SESS,现有的显着性方法变得稳健,可在尺度差异,目标对象的多次出现,分散器的存在以及产生较少的嘈杂和更具歧视性显着性图。 SESS通过从不同区域的不同尺度上从多个斑块中提取的显着图来提高显着性,并使用新型的融合方案结合了这些单独的地图,该方案结合了通道的重量和空间加权平均值。为了提高效率,我们引入了一个预过滤步骤,该步骤可以排除非信息显着图以提高效率,同时仍提高整体结果。我们在对象识别和检测基准上评估SESS可以取得重大改进。该守则公开发布以使研究人员能够验证绩效和进一步发展。代码可用:https://github.com/neouyghur/sess
translated by 谷歌翻译