Estimating uncertainty in image-to-image networks is an important task, particularly as such networks are being increasingly deployed in the biological and medical imaging realms. In this paper, we introduce a new approach to this problem based on masking. Given an existing image-to-image network, our approach computes a mask such that the distance between the masked reconstructed image and the masked true image is guaranteed to be less than a specified threshold, with high probability. The mask thus identifies the more certain regions of the reconstructed image. Our approach is agnostic to the underlying image-to-image network, and only requires triples of the input (degraded), reconstructed and true images for training. Furthermore, our method is agnostic to the distance metric used. As a result, one can use $L_p$-style distances or perceptual distances like LPIPS, which contrasts with interval-based approaches to uncertainty. Our theoretical guarantees derive from a conformal calibration procedure. We evaluate our mask-based approach to uncertainty on image colorization, image completion, and super-resolution tasks, demonstrating high quality performance on each.
translated by 谷歌翻译
计算机视觉中有意义的不确定性量化需要有关语义信息的推理 - 例如,照片中的人的头发颜色或街上汽车的位置。为此,最近在生成建模方面的突破使我们能够在分离的潜在空间中代表语义信息,但是在语义潜在变量上提供不确定性仍然具有挑战性。在这项工作中,我们提供了原则上的不确定性间隔,这些间隔可保证为任何潜在的生成模型包含真正的语义因素。该方法执行以下操作:(1)它使用分位数回归来输出潜在空间中每个元素的启发式不确定性间隔(2)校准了这些不确定性,以使它们包含新的,看不见的输入的潜在值。然后可以通过发电机传播这些校准间隔的终点,以为每个语义因素产生可解释的不确定性可视化。该技术可靠地传达了语义上有意义的,有原则和实例自适应的不确定性,例如图像超分辨率和图像完成。
translated by 谷歌翻译
In this work, a method for obtaining pixel-wise error bounds in Bayesian regularization of inverse imaging problems is introduced. The proposed method employs estimates of the posterior variance together with techniques from conformal prediction in order to obtain coverage guarantees for the error bounds, without making any assumption on the underlying data distribution. It is generally applicable to Bayesian regularization approaches, independent, e.g., of the concrete choice of the prior. Furthermore, the coverage guarantees can also be obtained in case only approximate sampling from the posterior is possible. With this in particular, the proposed framework is able to incorporate any learned prior in a black-box manner. Guaranteed coverage without assumptions on the underlying distributions is only achievable since the magnitude of the error bounds is, in general, unknown in advance. Nevertheless, experiments with multiple regularization approaches presented in the paper confirm that in practice, the obtained error bounds are rather tight. For realizing the numerical experiments, also a novel primal-dual Langevin algorithm for sampling from non-smooth distributions is introduced in this work.
translated by 谷歌翻译
在过去几十年中,已经提出了各种方法,用于估计回归设置中的预测间隔,包括贝叶斯方法,集合方法,直接间隔估计方法和保形预测方法。重要问题是这些方法的校准:生成的预测间隔应该具有预定义的覆盖水平,而不会过于保守。在这项工作中,我们从概念和实验的角度审查上述四类方法。结果来自各个域的基准数据集突出显示从一个数据集中的性能的大波动。这些观察可能归因于违反某些类别的某些方法所固有的某些假设。我们说明了如何将共形预测用作提供不具有校准步骤的方法的方法的一般校准程序。
translated by 谷歌翻译
分位数回归(QR)是一个强大的工具,用于估计目标变量$ \ mathrm {y} $的一个或多个条件分位数给定的解释功能$ \ boldsymbol {\ mathrm {x}}} $。 QR的一个限制是,由于其目标函数的提出,它仅针对标量目标变量定义,并且由于分位数的概念对多元分布没有标准定义。最近,由于通过最佳传输将分位数概念对多变量分布的有意义的概括,提出了矢量分位数回归(VQR)作为矢量值目标变量的QR扩展。尽管它优雅,但VQR可以说是由于几个限制而在实践中不适用:(i)假设目标$ \ boldsymbol {\ mathrm {y}} $给定功能$ \ boldsymbol {\ mathrm {\ mathrm {\ mathrm {\ mathrm { {x}} $; (ii)即使在目标维度,回归分位数或特征数量的数量方面,它的确切配方也是棘手的,即使对于适度的问题,并且其放松的双重配方可能违反了估计的分位数的单调性; (iii)当前不存在VQR的快速或可扩展求解器。在这项工作中,我们完全解决了这些局限性,即:(i)将VQR扩展到非线性情况,显示出对线性VQR的实质性改进; (ii)我们提出{矢量单调重排},该方法可确保VQR估计的分位数函数是单调函数; (iii)我们为线性和非线性VQR提供快速的GPU加速求解器,这些求解器保持固定的内存足迹,并证明它们扩展到数百万个样品和数千个分位数; (iv)我们发布了求解器的优化Python软件包,以广泛使用VQR在现实世界应用中的使用。
translated by 谷歌翻译
可预测的不确定性可以通过两个性能 - 校准和清晰度来表征。本文争辩说明这些属性的不确定性,并提出了在深度学习中强制执行它们的简单算法。我们的方法专注于校准 - 分布校准的最强概念 - 并通过用神经估计器拟合低维密度或定量函数来实施它。由此产生的方法比以前的分类和回归方式更简单,更广泛适用。凭经验,我们发现我们的方法改善了几个任务的预测性不确定性,具有最小的计算和实现开销。我们的见解表明,培训深度学习模式的简单和改进方式,导致应准确的不确定性,应利用,以改善下游应用程序的性能。
translated by 谷歌翻译
现在通常用于高风险设置,如医疗诊断,如医疗诊断,那么需要不确定量化,以避免后续模型失败。无分发的不确定性量化(无分布UQ)是用户友好的范式,用于为这种预测创建统计上严格的置信区间/集合。批判性地,间隔/集合有效而不进行分布假设或模型假设,即使具有最多许多DataPoints也具有显式保证。此外,它们适应输入的难度;当输入示例很困难时,不确定性间隔/集很大,信号传达模型可能是错误的。在没有多大的工作和没有再培训的情况下,可以在任何潜在的算法(例如神经网络)上使用无分​​发方法,以产生置信度集,以便包含用户指定概率,例如90%。实际上,这些方法易于理解和一般,应用于计算机视觉,自然语言处理,深度加强学习等领域出现的许多现代预测问题。这种实践介绍是针对对无需统计学家的免费UQ的实际实施感兴趣的读者。我们通过实际的理论和无分发UQ的应用领导读者,从保形预测开始,并使无关的任何风险的分布控制,如虚假发现率,假阳性分布检测,等等。我们将包括Python中的许多解释性插图,示例和代码样本,具有Pytorch语法。目标是提供读者对无分配UQ的工作理解,使它们能够将置信间隔放在算法上,其中包含一个自包含的文档。
translated by 谷歌翻译
We develop a method to generate predictive regions that cover a multivariate response variable with a user-specified probability. Our work is composed of two components. First, we use a deep generative model to learn a representation of the response that has a unimodal distribution. Existing multiple-output quantile regression approaches are effective in such cases, so we apply them on the learned representation, and then transform the solution to the original space of the response. This process results in a flexible and informative region that can have an arbitrary shape, a property that existing methods lack. Second, we propose an extension of conformal prediction to the multivariate response setting that modifies any method to return sets with a pre-specified coverage level. The desired coverage is theoretically guaranteed in the finite-sample case for any distribution. Experiments conducted on both real and synthetic data show that our method constructs regions that are significantly smaller compared to existing techniques.
translated by 谷歌翻译
高质量的校准不确定性估计对于众多现实世界应用至关重要,尤其是对于基于深度学习的部署的ML系统。虽然贝叶斯深度学习技术允许估计不确定性,但使用大规模数据集培训它们是一个昂贵的过程,并不总是会产生与非贝斯尼亚对应物竞争的模型。此外,许多已经经过培训和部署的高性能深度学习模型本质上都是非拜拜西亚人,并且不提供不确定性估计。为了解决这些问题,我们提出了贝叶斯cap,该贝内斯cap学习了冷冻模型的贝叶斯身份映射,从而估算了不确定性。 Bayescap是一种记忆效率的方法,可以在原始数据集的一小部分中进行训练,从而通过为预测提供了校准的不确定性估计,而没有(i)妨碍模型的性能和(ii),从而增强了预审预学的非bayesian计算机视觉模型。需要从头开始昂贵的型号。所提出的方法对各种架构和任务不可知。我们显示了我们方法对各种各样的任务的功效,这些任务具有多种架构,包括图像超分辨率,脱蓝色,内化和关键应用,例如医学图像翻译。此外,我们将派生的不确定性估计值应用于在自主驾驶深度估计等关键情况下检测分布样本。代码可在https://github.com/explainableml/bayescap上找到。
translated by 谷歌翻译
有效的决策需要了解预测中固有的不确定性。在回归中,这种不确定性可以通过各种方法估算;然而,许多这些方法对调谐进行费力,产生过度自确性的不确定性间隔,或缺乏敏锐度(给予不精确的间隔)。我们通过提出一种通过定义具有两个不同损失功能的神经网络来捕获回归中的预测分布的新方法来解决这些挑战。具体地,一个网络近似于累积分布函数,第二网络近似于其逆。我们将此方法称为合作网络(CN)。理论分析表明,优化的固定点处于理想化的解决方案,并且该方法是渐近的与地面真理分布一致。凭经验,学习是简单且强大的。我们基准CN对两个合成和六个现实世界数据集的几种常见方法,包括预测来自电子健康记录的糖尿病患者的A1C值,其中不确定是至关重要的。在合成数据中,所提出的方法与基本上匹配地面真理。在真实世界数据集中,CN提高了许多性能度量的结果,包括对数似然估计,平均误差,覆盖估计和预测间隔宽度。
translated by 谷歌翻译
我们提出\ textbf {jaws},这是一系列用于无分配的不确定性量化任务的包装方法,以协变量偏移为中心,以我们的核心方法\ textbf {jaw}为中心,\ textbf {ja} ckknife+ \ textbf {w}八 - 重量。下巴还包括使用高阶影响函数的JAW的计算有效\ TextBf {a} pproximations:\ textbf {jawa}。从理论上讲,我们表明JAW放宽了Jackknife+对数据交换性的假设,即使在协变量转移下,也可以实现相同的有限样本覆盖范围保证。 Jawa在轻度假设下进一步以样本量或影响函数顺序的限制接近JAW保证。此外,我们提出了一种通用方法,以重新利用任何无分配不确定性量化方法及其对风险评估的任务的保证:该任务产生了真正标签在用户指定间隔内的估计概率。然后,我们将\ textbf {Jaw-r}和\ textbf {Jawa-r}作为\ textbf {r} ISK评估的建议方法的重新定义版本。实际上,在各种有偏见的现实世界数据集中,下颌的最先进的预测推理基准都超出了间隔生成和风险评估审计任务的偏差。
translated by 谷歌翻译
我们研究了回归中神经网络(NNS)的模型不确定性的方法。为了隔离模型不确定性的效果,我们专注于稀缺训练数据的无噪声环境。我们介绍了关于任何方法都应满足的模型不确定性的五个重要的逃亡者。但是,我们发现,建立的基准通常无法可靠地捕获其中一些逃避者,即使是贝叶斯理论要求的基准。为了解决这个问题,我们介绍了一种新方法来捕获NNS的模型不确定性,我们称之为基于神经优化的模型不确定性(NOMU)。 NOMU的主要思想是设计一个由两个连接的子NN组成的网络体系结构,一个用于模型预测,一个用于模型不确定性,并使用精心设计的损耗函数进行训练。重要的是,我们的设计执行NOMU满足我们的五个Desiderata。由于其模块化体系结构,NOMU可以为任何给定(先前训练)NN提供模型不确定性,如果访问其培训数据。我们在各种回归任务和无嘈杂的贝叶斯优化(BO)中评估NOMU,并具有昂贵的评估。在回归中,NOMU至少和最先进的方法。在BO中,Nomu甚至胜过所有考虑的基准。
translated by 谷歌翻译
在回归设置中量化不确定性的许多方法中,指定完整量子函数具有吸引力,随着量级可用于解释和评估。预测每个输入的真实条件定量的模型,在所有量化水平上都具有潜在的不确定性的正确和有效的表示。为实现这一目标,许多基于当前的分位式的方法侧重于优化所谓的弹球损失。然而,这种损失限制了适用的回归模型的范围,限制了靶向许多所需特性的能力(例如校准,清晰度,中心间隔),并且可能产生差的条件量数。在这项工作中,我们开发了满足这些缺点的新分位式方法。特别是,我们提出了可以适用于任何类别的回归模型的方法,允许在校准和清晰度之间选择权衡,优化校准中心间隔,并产生更准确的条件定位。我们对我们的方法提供了彻底的实验评估,其中包括核融合中的高维不确定性量化任务。
translated by 谷歌翻译
机器学习模型通常培训端到端和监督设置,使用配对(输入,输出)数据。示例包括最近的超分辨率方法,用于在(低分辨率,高分辨率)图像上培训。然而,这些端到端的方法每当输入中存在分布偏移时需要重新训练(例如,夜间图像VS日光)或相关的潜在变量(例如,相机模糊或手动运动)。在这项工作中,我们利用最先进的(SOTA)生成模型(这里是Stylegan2)来构建强大的图像前提,这使得贝叶斯定理应用于许多下游重建任务。我们的方法是通过生成模型(BRGM)的贝叶斯重建,使用单个预先训练的发生器模型来解决不同的图像恢复任务,即超级分辨率和绘画,通过与不同的前向腐败模型相结合。我们将发电机模型的重量保持固定,并通过估计产生重建图像的输入潜在的跳过载体来重建图像来估计图像。我们进一步使用变分推理来近似潜伏向量的后部分布,我们对多种解决方案进行采样。我们在三个大型和多样化的数据集中展示了BRGM:(i)来自Flick的60,000个图像面向高质量的数据集(II)来自MIMIC III的高质量数据集(II)240,000胸X射线,(III)的组合收集5脑MRI数据集,具有7,329个扫描。在所有三个数据集和没有任何DataSet特定的HyperParameter调整,我们的简单方法会在超级分辨率和绘画上对当前的特定任务最先进的方法产生性能竞争力,同时更加稳定,而不需要任何培训。我们的源代码和预先训练的型号可在线获取:https://razvanmarinescu.github.io/brgm/。
translated by 谷歌翻译
机器学习方法越来越广泛地用于医疗保健,运输和金融等高危环境中。在这些环境中,重要的是,模型要产生校准的不确定性以反映其自信并避免失败。在本文中,我们调查了有关深度学习的不确定性定量(UQ)的最新著作,特别是针对其数学属性和广泛适用性的无分配保形方法。我们将涵盖共形方法的理论保证,引入在时空数据的背景下提高UQ的校准和效率的技术,并讨论UQ在安全决策中的作用。
translated by 谷歌翻译
$ \ Texit {Fermi} $数据中的银河系中多余(GCE)的两个领先假设是一个未解决的微弱毫秒脉冲条件(MSP)和暗物质(DM)湮灭。这些解释之间的二分法通常通过将它们建模为两个单独的发射组分来反映。然而,诸如MSP的点源(PSS)在超微弱的极限中具有统计变质的泊松发射(正式的位置,预期每个来源平均贡献远低于一个光子),导致可能提出问题的歧义如排放是否是PS样或性质中的泊松人。我们提出了一种概念上的新方法,以统一的方式描述PS和泊松发射,并且刚刚从此获得的结果中获得了对泊松组件的约束。为了实现这种方法,我们利用深度学习技术,围绕基于神经网络的方法,用于直方图回归,其表达量数量的不确定性。我们证明我们的方法对许多困扰先前接近的系统,特别是DM / PS误操作来稳健。在$ \ texit {fermi} $数据中,我们发现由$ \ sim4 \ times 10 ^ {-11} \ \ text {counts} \ {counts} \ text {counts} \ text {counts} \ \ text {cm} ^ { - 2} \ \ text {s} ^ { - 1} $(对应于$ \ sim3 - 4 $每pL期望计数),这需要$ n \ sim \ mathcal {o}( 10 ^ 4)$源来解释整个过剩(中位数价值$ n = \文本{29,300} $横跨天空)。虽然微弱,但这种SCD允许我们获得95%信心的Poissonian比赛的约束$ \ eta_p \ leq 66 \%$。这表明大量的GCE通量是由于PSS 。
translated by 谷歌翻译
分位数回归是统计学习中的一个基本问题,这是由于需要量化预测中的不确定性或对多样化的人群建模而不过分减少的统计学习。例如,流行病学预测,成本估算和收入预测都可以准确地量化可能的值的范围。因此,在计量经济学,统计和机器学习的多年研究中,已经为这个问题开发了许多模型。而不是提出另一种(新的)算法用于分位数回归,而是采用元观点:我们研究用于汇总任意数量的有条件分位模型的方法,以提高准确性和鲁棒性。我们考虑加权合奏,其中权重不仅可能因单个模型,而且要多于分位数和特征值而变化。我们在本文中考虑的所有模型都可以使用现代深度学习工具包适合,因此可以广泛访问(从实现的角度)和可扩展。为了提高预测分位数的准确性(或等效地,预测间隔),我们开发了确保分位数保持单调排序的工具,并采用保形校准方法。可以使用这些,而无需对原始模型的原始库进行任何修改。我们还回顾了一些围绕分数聚集和相关评分规则的基本理论,并为该文献做出了一些新的结果(例如,在分类或等渗后回归只能提高加权间隔得分的事实)。最后,我们提供了来自两个不同基准存储库的34个数据集的广泛的经验比较套件。
translated by 谷歌翻译
Accurate uncertainty measurement is a key step to building robust and reliable machine learning systems. Conformal prediction is a distribution-free uncertainty quantification algorithm popular for its ease of implementation, statistical coverage guarantees, and versatility for underlying forecasters. However, existing conformal prediction algorithms for time series are limited to single-step prediction without considering the temporal dependency. In this paper we propose a Copula Conformal Prediction algorithm for multivariate, multi-step Time Series forecasting, CopulaCPTS. On several synthetic and real-world multivariate time series datasets, we show that CopulaCPTS produces more calibrated and sharp confidence intervals for multi-step prediction tasks than existing techniques.
translated by 谷歌翻译
Accurate uncertainty quantification is a major challenge in deep learning, as neural networks can make overconfident errors and assign high confidence predictions to out-of-distribution (OOD) inputs. The most popular approaches to estimate predictive uncertainty in deep learning are methods that combine predictions from multiple neural networks, such as Bayesian neural networks (BNNs) and deep ensembles. However their practicality in real-time, industrial-scale applications are limited due to the high memory and computational cost. Furthermore, ensembles and BNNs do not necessarily fix all the issues with the underlying member networks. In this work, we study principled approaches to improve uncertainty property of a single network, based on a single, deterministic representation. By formalizing the uncertainty quantification as a minimax learning problem, we first identify distance awareness, i.e., the model's ability to quantify the distance of a testing example from the training data, as a necessary condition for a DNN to achieve high-quality (i.e., minimax optimal) uncertainty estimation. We then propose Spectral-normalized Neural Gaussian Process (SNGP), a simple method that improves the distance-awareness ability of modern DNNs with two simple changes: (1) applying spectral normalization to hidden weights to enforce bi-Lipschitz smoothness in representations and (2) replacing the last output layer with a Gaussian process layer. On a suite of vision and language understanding benchmarks, SNGP outperforms other single-model approaches in prediction, calibration and out-of-domain detection. Furthermore, SNGP provides complementary benefits to popular techniques such as deep ensembles and data augmentation, making it a simple and scalable building block for probabilistic deep learning. Code is open-sourced at https://github.com/google/uncertainty-baselines
translated by 谷歌翻译
必须校准不确定性估计值(即准确)和清晰(即信息性),以便有用。这激发了各种重新校准的方法,这些方法使用固定数据将未校准的模型转化为校准模型。但是,由于原始模型也是概率模型,因此现有方法的适用性受到限制。我们在回归中引入了一种用于重新校准的算法类别,我们称为模块化保形校准(MCC)。该框架允许人们将任何回归模型转换为校准的概率模型。 MCC的模块化设计使我们能够对现有算法进行简单调整,以实现良好的分配预测。我们还为MCC算法提供有限样本的校准保证。我们的框架恢复了等渗的重新校准,保形校准和共形间隔预测,这意味着我们的理论结果也适用于这些方法。最后,我们对17个回归数据集进行了MCC的经验研究。我们的结果表明,在我们的框架中设计的新算法实现了接近完美的校准,并相对于现有方法提高了清晰度。
translated by 谷歌翻译