在回归设置中量化不确定性的许多方法中,指定完整量子函数具有吸引力,随着量级可用于解释和评估。预测每个输入的真实条件定量的模型,在所有量化水平上都具有潜在的不确定性的正确和有效的表示。为实现这一目标,许多基于当前的分位式的方法侧重于优化所谓的弹球损失。然而,这种损失限制了适用的回归模型的范围,限制了靶向许多所需特性的能力(例如校准,清晰度,中心间隔),并且可能产生差的条件量数。在这项工作中,我们开发了满足这些缺点的新分位式方法。特别是,我们提出了可以适用于任何类别的回归模型的方法,允许在校准和清晰度之间选择权衡,优化校准中心间隔,并产生更准确的条件定位。我们对我们的方法提供了彻底的实验评估,其中包括核融合中的高维不确定性量化任务。
translated by 谷歌翻译
在过去几十年中,已经提出了各种方法,用于估计回归设置中的预测间隔,包括贝叶斯方法,集合方法,直接间隔估计方法和保形预测方法。重要问题是这些方法的校准:生成的预测间隔应该具有预定义的覆盖水平,而不会过于保守。在这项工作中,我们从概念和实验的角度审查上述四类方法。结果来自各个域的基准数据集突出显示从一个数据集中的性能的大波动。这些观察可能归因于违反某些类别的某些方法所固有的某些假设。我们说明了如何将共形预测用作提供不具有校准步骤的方法的方法的一般校准程序。
translated by 谷歌翻译
分位数回归是统计学习中的一个基本问题,这是由于需要量化预测中的不确定性或对多样化的人群建模而不过分减少的统计学习。例如,流行病学预测,成本估算和收入预测都可以准确地量化可能的值的范围。因此,在计量经济学,统计和机器学习的多年研究中,已经为这个问题开发了许多模型。而不是提出另一种(新的)算法用于分位数回归,而是采用元观点:我们研究用于汇总任意数量的有条件分位模型的方法,以提高准确性和鲁棒性。我们考虑加权合奏,其中权重不仅可能因单个模型,而且要多于分位数和特征值而变化。我们在本文中考虑的所有模型都可以使用现代深度学习工具包适合,因此可以广泛访问(从实现的角度)和可扩展。为了提高预测分位数的准确性(或等效地,预测间隔),我们开发了确保分位数保持单调排序的工具,并采用保形校准方法。可以使用这些,而无需对原始模型的原始库进行任何修改。我们还回顾了一些围绕分数聚集和相关评分规则的基本理论,并为该文献做出了一些新的结果(例如,在分类或等渗后回归只能提高加权间隔得分的事实)。最后,我们提供了来自两个不同基准存储库的34个数据集的广泛的经验比较套件。
translated by 谷歌翻译
有效的决策需要了解预测中固有的不确定性。在回归中,这种不确定性可以通过各种方法估算;然而,许多这些方法对调谐进行费力,产生过度自确性的不确定性间隔,或缺乏敏锐度(给予不精确的间隔)。我们通过提出一种通过定义具有两个不同损失功能的神经网络来捕获回归中的预测分布的新方法来解决这些挑战。具体地,一个网络近似于累积分布函数,第二网络近似于其逆。我们将此方法称为合作网络(CN)。理论分析表明,优化的固定点处于理想化的解决方案,并且该方法是渐近的与地面真理分布一致。凭经验,学习是简单且强大的。我们基准CN对两个合成和六个现实世界数据集的几种常见方法,包括预测来自电子健康记录的糖尿病患者的A1C值,其中不确定是至关重要的。在合成数据中,所提出的方法与基本上匹配地面真理。在真实世界数据集中,CN提高了许多性能度量的结果,包括对数似然估计,平均误差,覆盖估计和预测间隔宽度。
translated by 谷歌翻译
我们研究了回归中神经网络(NNS)的模型不确定性的方法。为了隔离模型不确定性的效果,我们专注于稀缺训练数据的无噪声环境。我们介绍了关于任何方法都应满足的模型不确定性的五个重要的逃亡者。但是,我们发现,建立的基准通常无法可靠地捕获其中一些逃避者,即使是贝叶斯理论要求的基准。为了解决这个问题,我们介绍了一种新方法来捕获NNS的模型不确定性,我们称之为基于神经优化的模型不确定性(NOMU)。 NOMU的主要思想是设计一个由两个连接的子NN组成的网络体系结构,一个用于模型预测,一个用于模型不确定性,并使用精心设计的损耗函数进行训练。重要的是,我们的设计执行NOMU满足我们的五个Desiderata。由于其模块化体系结构,NOMU可以为任何给定(先前训练)NN提供模型不确定性,如果访问其培训数据。我们在各种回归任务和无嘈杂的贝叶斯优化(BO)中评估NOMU,并具有昂贵的评估。在回归中,NOMU至少和最先进的方法。在BO中,Nomu甚至胜过所有考虑的基准。
translated by 谷歌翻译
可预测的不确定性可以通过两个性能 - 校准和清晰度来表征。本文争辩说明这些属性的不确定性,并提出了在深度学习中强制执行它们的简单算法。我们的方法专注于校准 - 分布校准的最强概念 - 并通过用神经估计器拟合低维密度或定量函数来实施它。由此产生的方法比以前的分类和回归方式更简单,更广泛适用。凭经验,我们发现我们的方法改善了几个任务的预测性不确定性,具有最小的计算和实现开销。我们的见解表明,培训深度学习模式的简单和改进方式,导致应准确的不确定性,应利用,以改善下游应用程序的性能。
translated by 谷歌翻译
现在通常用于高风险设置,如医疗诊断,如医疗诊断,那么需要不确定量化,以避免后续模型失败。无分发的不确定性量化(无分布UQ)是用户友好的范式,用于为这种预测创建统计上严格的置信区间/集合。批判性地,间隔/集合有效而不进行分布假设或模型假设,即使具有最多许多DataPoints也具有显式保证。此外,它们适应输入的难度;当输入示例很困难时,不确定性间隔/集很大,信号传达模型可能是错误的。在没有多大的工作和没有再培训的情况下,可以在任何潜在的算法(例如神经网络)上使用无分​​发方法,以产生置信度集,以便包含用户指定概率,例如90%。实际上,这些方法易于理解和一般,应用于计算机视觉,自然语言处理,深度加强学习等领域出现的许多现代预测问题。这种实践介绍是针对对无需统计学家的免费UQ的实际实施感兴趣的读者。我们通过实际的理论和无分发UQ的应用领导读者,从保形预测开始,并使无关的任何风险的分布控制,如虚假发现率,假阳性分布检测,等等。我们将包括Python中的许多解释性插图,示例和代码样本,具有Pytorch语法。目标是提供读者对无分配UQ的工作理解,使它们能够将置信间隔放在算法上,其中包含一个自包含的文档。
translated by 谷歌翻译
机器学习方法越来越广泛地用于医疗保健,运输和金融等高危环境中。在这些环境中,重要的是,模型要产生校准的不确定性以反映其自信并避免失败。在本文中,我们调查了有关深度学习的不确定性定量(UQ)的最新著作,特别是针对其数学属性和广泛适用性的无分配保形方法。我们将涵盖共形方法的理论保证,引入在时空数据的背景下提高UQ的校准和效率的技术,并讨论UQ在安全决策中的作用。
translated by 谷歌翻译
必须校准不确定性估计值(即准确)和清晰(即信息性),以便有用。这激发了各种重新校准的方法,这些方法使用固定数据将未校准的模型转化为校准模型。但是,由于原始模型也是概率模型,因此现有方法的适用性受到限制。我们在回归中引入了一种用于重新校准的算法类别,我们称为模块化保形校准(MCC)。该框架允许人们将任何回归模型转换为校准的概率模型。 MCC的模块化设计使我们能够对现有算法进行简单调整,以实现良好的分配预测。我们还为MCC算法提供有限样本的校准保证。我们的框架恢复了等渗的重新校准,保形校准和共形间隔预测,这意味着我们的理论结果也适用于这些方法。最后,我们对17个回归数据集进行了MCC的经验研究。我们的结果表明,在我们的框架中设计的新算法实现了接近完美的校准,并相对于现有方法提高了清晰度。
translated by 谷歌翻译
上下文匪徒的大多数非政策评估方法都集中在政策的预期结果上,该方法是通过最多只能提供渐近保证的方法来估算的。但是,在许多应用中,期望可能不是最佳绩效衡量标准,因为它不会捕获结果的可变性。此外,特别是在关键安全环境中,可能需要比渐近正确性更强的保证。为了解决这些局限性,我们考虑了对上下文匪徒的保形预测的新颖应用。给定在行为策略中收集的数据,我们建议\ emph {condormal非政策预测}(COPP),该数据可以在新目标策略下为结果输出可靠的预测间隔。我们提供理论有限样本的保证,而无需做出任何其他假设,而不是标准的上下文匪徒设置,并且与现有的合成和现实世界数据相比,经验证明了COPP的实用性。
translated by 谷歌翻译
贝叶斯优化是一种过程,允许获得黑盒功能的全局最佳功能,并且在超参数优化等应用中有用。在目标函数的形状上估计的不确定性估计是引导优化过程的工具。但是,如果客观函数违反基础模型(例如,高斯)的假设,这些估计可能是不准确的。我们提出了一种简单的算法,可以通过目标函数校准后部分布的不确定性作为贝叶斯型优化过程的一部分。我们表明,通过提高校准后分布的不确定性估计,贝叶斯优化使得更好的决策并以较少的步骤到达全球最佳。我们表明,该技术提高了贝叶斯优化对标准基准函数和超参数优化任务的性能。
translated by 谷歌翻译
本文介绍了分类器校准原理和实践的简介和详细概述。校准的分类器正确地量化了与其实例明智的预测相关的不确定性或信心水平。这对于关键应用,最佳决策,成本敏感的分类以及某些类型的上下文变化至关重要。校准研究具有丰富的历史,其中几十年来预测机器学习作为学术领域的诞生。然而,校准兴趣的最近增加导致了新的方法和从二进制到多种子体设置的扩展。需要考虑的选项和问题的空间很大,并导航它需要正确的概念和工具集。我们提供了主要概念和方法的介绍性材料和最新的技术细节,包括适当的评分规则和其他评估指标,可视化方法,全面陈述二进制和多字数分类的HOC校准方法,以及几个先进的话题。
translated by 谷歌翻译
Methods for reasoning under uncertainty are a key building block of accurate and reliable machine learning systems. Bayesian methods provide a general framework to quantify uncertainty. However, because of model misspecification and the use of approximate inference, Bayesian uncertainty estimates are often inaccurate -for example, a 90% credible interval may not contain the true outcome 90% of the time. Here, we propose a simple procedure for calibrating any regression algorithm; when applied to Bayesian and probabilistic models, it is guaranteed to produce calibrated uncertainty estimates given enough data. Our procedure is inspired by Platt scaling and extends previous work on classification. We evaluate this approach on Bayesian linear regression, feedforward, and recurrent neural networks, and find that it consistently outputs well-calibrated credible intervals while improving performance on time series forecasting and model-based reinforcement learning tasks.
translated by 谷歌翻译
考虑到其协变量$ \ boldsymbol x $的连续或分类响应变量$ \ boldsymbol y $的分布是统计和机器学习中的基本问题。深度神经网络的监督学习算法在预测给定$ \ boldsymbol x $的$ \ boldsymbol y $的平均值方面取得了重大进展,但是他们经常因其准确捕捉预测的不确定性的能力而受到批评。在本文中,我们引入了分类和回归扩散(卡)模型,该模型结合了基于扩散的条件生成模型和预训练的条件估计器,以准确预测给定$ \ boldsymbol y $的分布,给定$ \ boldsymbol x $。我们证明了通过玩具示例和现实世界数据集的有条件分配预测的卡片的出色能力,实验结果表明,一般的卡在一般情况下都优于最先进的方法,包括基于贝叶斯的神经网络的方法专为不确定性估计而设计,尤其是当给定$ \ boldsymbol y $的条件分布给定的$ \ boldsymbol x $是多模式时。
translated by 谷歌翻译
我们开发了一个框架,用于在线环境中使用有效的覆盖范围保证构建不确定性集,其中基础数据分布可以急剧(甚至对手)随着时间的推移而发生巨大变化。我们提出的技术非常灵活,因为它可以与任何在线学习算法集成,需要最低限度的实施工作和计算成本。我们方法比现有替代方案的关键优势(也基于共形推断)是我们不需要将数据分为培训和保持校准集。这使我们能够以完全在线的方式拟合预测模型,并利用最新的观察结果来构建校准的不确定性集。因此,与现有技术相反,(i)我们构建的集合可以迅速适应分布的新变化; (ii)我们的过程不需要在每个时间步骤进行改装。使用合成和现实世界的基准数据集,我们证明了理论的有效性以及提案对现有技术的提高绩效。为了证明所提出的方法的更大灵活性,我们展示了如何为多出输出回归问题构造有效的间隔,而以前的顺序校准方法由于不切实际的计算和内存需求而无法处理。
translated by 谷歌翻译
This paper presents a novel probabilistic forecasting method called ensemble conformalized quantile regression (EnCQR). EnCQR constructs distribution-free and approximately marginally valid prediction intervals (PIs), which are suitable for nonstationary and heteroscedastic time series data. EnCQR can be applied on top of a generic forecasting model, including deep learning architectures. EnCQR exploits a bootstrap ensemble estimator, which enables the use of conformal predictors for time series by removing the requirement of data exchangeability. The ensemble learners are implemented as generic machine learning algorithms performing quantile regression, which allow the length of the PIs to adapt to local variability in the data. In the experiments, we predict time series characterized by a different amount of heteroscedasticity. The results demonstrate that EnCQR outperforms models based only on quantile regression or conformal prediction, and it provides sharper, more informative, and valid PIs.
translated by 谷歌翻译
共形预测是一种简单而强大的工具,可以无需任何分布假设来量化不确定性。但是,现有方法只能提供平均覆盖范围保证,这与更强的条件覆盖范围保证相比并不理想。尽管实现确切的条件覆盖范围是不可能的,但近似条件覆盖范围仍然是一个重要的研究方向。在本文中,我们通过利用条件分布的局部近似来提出修改的不符合得分。修改后的分数继承了分裂保形方法的精神,与完整的保形方法相比,这是简单而有效的,但更好地近似条件覆盖范围保证。各种数据集的经验结果,包括图像上的高维年龄回归,表明我们的方法与现有方法相比提供了更紧密的间隔。
translated by 谷歌翻译
We develop a method to generate predictive regions that cover a multivariate response variable with a user-specified probability. Our work is composed of two components. First, we use a deep generative model to learn a representation of the response that has a unimodal distribution. Existing multiple-output quantile regression approaches are effective in such cases, so we apply them on the learned representation, and then transform the solution to the original space of the response. This process results in a flexible and informative region that can have an arbitrary shape, a property that existing methods lack. Second, we propose an extension of conformal prediction to the multivariate response setting that modifies any method to return sets with a pre-specified coverage level. The desired coverage is theoretically guaranteed in the finite-sample case for any distribution. Experiments conducted on both real and synthetic data show that our method constructs regions that are significantly smaller compared to existing techniques.
translated by 谷歌翻译
开发准确,灵活和数值有效的不确定性量化(UQ)方法是机器学习中的基本挑战之一。以前,已经提出了一种名为Disco Nets的UQ方法(Bouchacourt等,2016),该方法通过最大程度地减少训练数据中所谓的能量评分来训练神经网络。该方法在计算机视觉中的手姿势估计任务上表现出了出色的性能,但是尚不清楚该方法是否可以很好地对表格数据进行回归,以及它如何与较新的高级UQ方法(例如NGBOOST)竞争。在本文中,我们提出了改进的迪斯科网络神经结构,该建筑接受了更稳定和平稳的训练。我们将这种方法基于其他现实世界表格数据集,并确认它具有竞争力甚至优于标准的UQ基准。我们还为使用能量评分学习预测分布的有效性提供了新的基本证明。此外,我们指出的是,迪斯科的原始形式忽略了认知的不确定性,只捕获了不确定性。我们为这个问题提出了一个简单的解决方案。
translated by 谷歌翻译
This paper considers doing quantile regression on censored data using neural networks (NNs). This adds to the survival analysis toolkit by allowing direct prediction of the target variable, along with a distribution-free characterisation of uncertainty, using a flexible function approximator. We begin by showing how an algorithm popular in linear models can be applied to NNs. However, the resulting procedure is inefficient, requiring sequential optimisation of an individual NN at each desired quantile. Our major contribution is a novel algorithm that simultaneously optimises a grid of quantiles output by a single NN. To offer theoretical insight into our algorithm, we show firstly that it can be interpreted as a form of expectation-maximisation, and secondly that it exhibits a desirable `self-correcting' property. Experimentally, the algorithm produces quantiles that are better calibrated than existing methods on 10 out of 12 real datasets.
translated by 谷歌翻译