分位数回归是统计学习中的一个基本问题,这是由于需要量化预测中的不确定性或对多样化的人群建模而不过分减少的统计学习。例如,流行病学预测,成本估算和收入预测都可以准确地量化可能的值的范围。因此,在计量经济学,统计和机器学习的多年研究中,已经为这个问题开发了许多模型。而不是提出另一种(新的)算法用于分位数回归,而是采用元观点:我们研究用于汇总任意数量的有条件分位模型的方法,以提高准确性和鲁棒性。我们考虑加权合奏,其中权重不仅可能因单个模型,而且要多于分位数和特征值而变化。我们在本文中考虑的所有模型都可以使用现代深度学习工具包适合,因此可以广泛访问(从实现的角度)和可扩展。为了提高预测分位数的准确性(或等效地,预测间隔),我们开发了确保分位数保持单调排序的工具,并采用保形校准方法。可以使用这些,而无需对原始模型的原始库进行任何修改。我们还回顾了一些围绕分数聚集和相关评分规则的基本理论,并为该文献做出了一些新的结果(例如,在分类或等渗后回归只能提高加权间隔得分的事实)。最后,我们提供了来自两个不同基准存储库的34个数据集的广泛的经验比较套件。
translated by 谷歌翻译
在过去几十年中,已经提出了各种方法,用于估计回归设置中的预测间隔,包括贝叶斯方法,集合方法,直接间隔估计方法和保形预测方法。重要问题是这些方法的校准:生成的预测间隔应该具有预定义的覆盖水平,而不会过于保守。在这项工作中,我们从概念和实验的角度审查上述四类方法。结果来自各个域的基准数据集突出显示从一个数据集中的性能的大波动。这些观察可能归因于违反某些类别的某些方法所固有的某些假设。我们说明了如何将共形预测用作提供不具有校准步骤的方法的方法的一般校准程序。
translated by 谷歌翻译
预测组合在预测社区中蓬勃发展,近年来,已经成为预测研究和活动主流的一部分。现在,由单个(目标)系列产生的多个预测组合通过整合来自不同来源收集的信息,从而提高准确性,从而减轻了识别单个“最佳”预测的风险。组合方案已从没有估计的简单组合方法演变为涉及时间变化的权重,非线性组合,组件之间的相关性和交叉学习的复杂方法。它们包括结合点预测和结合概率预测。本文提供了有关预测组合的广泛文献的最新评论,并参考可用的开源软件实施。我们讨论了各种方法的潜在和局限性,并突出了这些思想如何随着时间的推移而发展。还调查了有关预测组合实用性的一些重要问题。最后,我们以当前的研究差距和未来研究的潜在见解得出结论。
translated by 谷歌翻译
We develop a general framework for distribution-free predictive inference in regression, using conformal inference. The proposed methodology allows for the construction of a prediction band for the response variable using any estimator of the regression function. The resulting prediction band preserves the consistency properties of the original estimator under standard assumptions, while guaranteeing finite-sample marginal coverage even when these assumptions do not hold. We analyze and compare, both empirically and theoretically, the two major variants of our conformal framework: full conformal inference and split conformal inference, along with a related jackknife method. These methods offer different tradeoffs between statistical accuracy (length of resulting prediction intervals) and computational efficiency. As extensions, we develop a method for constructing valid in-sample prediction intervals called rank-one-out conformal inference, which has essentially the same computational efficiency as split conformal inference. We also describe an extension of our procedures for producing prediction bands with locally varying length, in order to adapt to heteroskedascity in the data. Finally, we propose a model-free notion of variable importance, called leave-one-covariate-out or LOCO inference. Accompanying this paper is an R package conformalInference that implements all of the proposals we have introduced. In the spirit of reproducibility, all of our empirical results can also be easily (re)generated using this package.
translated by 谷歌翻译
有效的决策需要了解预测中固有的不确定性。在回归中,这种不确定性可以通过各种方法估算;然而,许多这些方法对调谐进行费力,产生过度自确性的不确定性间隔,或缺乏敏锐度(给予不精确的间隔)。我们通过提出一种通过定义具有两个不同损失功能的神经网络来捕获回归中的预测分布的新方法来解决这些挑战。具体地,一个网络近似于累积分布函数,第二网络近似于其逆。我们将此方法称为合作网络(CN)。理论分析表明,优化的固定点处于理想化的解决方案,并且该方法是渐近的与地面真理分布一致。凭经验,学习是简单且强大的。我们基准CN对两个合成和六个现实世界数据集的几种常见方法,包括预测来自电子健康记录的糖尿病患者的A1C值,其中不确定是至关重要的。在合成数据中,所提出的方法与基本上匹配地面真理。在真实世界数据集中,CN提高了许多性能度量的结果,包括对数似然估计,平均误差,覆盖估计和预测间隔宽度。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
现在通常用于高风险设置,如医疗诊断,如医疗诊断,那么需要不确定量化,以避免后续模型失败。无分发的不确定性量化(无分布UQ)是用户友好的范式,用于为这种预测创建统计上严格的置信区间/集合。批判性地,间隔/集合有效而不进行分布假设或模型假设,即使具有最多许多DataPoints也具有显式保证。此外,它们适应输入的难度;当输入示例很困难时,不确定性间隔/集很大,信号传达模型可能是错误的。在没有多大的工作和没有再培训的情况下,可以在任何潜在的算法(例如神经网络)上使用无分​​发方法,以产生置信度集,以便包含用户指定概率,例如90%。实际上,这些方法易于理解和一般,应用于计算机视觉,自然语言处理,深度加强学习等领域出现的许多现代预测问题。这种实践介绍是针对对无需统计学家的免费UQ的实际实施感兴趣的读者。我们通过实际的理论和无分发UQ的应用领导读者,从保形预测开始,并使无关的任何风险的分布控制,如虚假发现率,假阳性分布检测,等等。我们将包括Python中的许多解释性插图,示例和代码样本,具有Pytorch语法。目标是提供读者对无分配UQ的工作理解,使它们能够将置信间隔放在算法上,其中包含一个自包含的文档。
translated by 谷歌翻译
在回归设置中量化不确定性的许多方法中,指定完整量子函数具有吸引力,随着量级可用于解释和评估。预测每个输入的真实条件定量的模型,在所有量化水平上都具有潜在的不确定性的正确和有效的表示。为实现这一目标,许多基于当前的分位式的方法侧重于优化所谓的弹球损失。然而,这种损失限制了适用的回归模型的范围,限制了靶向许多所需特性的能力(例如校准,清晰度,中心间隔),并且可能产生差的条件量数。在这项工作中,我们开发了满足这些缺点的新分位式方法。特别是,我们提出了可以适用于任何类别的回归模型的方法,允许在校准和清晰度之间选择权衡,优化校准中心间隔,并产生更准确的条件定位。我们对我们的方法提供了彻底的实验评估,其中包括核融合中的高维不确定性量化任务。
translated by 谷歌翻译
We develop a method to generate predictive regions that cover a multivariate response variable with a user-specified probability. Our work is composed of two components. First, we use a deep generative model to learn a representation of the response that has a unimodal distribution. Existing multiple-output quantile regression approaches are effective in such cases, so we apply them on the learned representation, and then transform the solution to the original space of the response. This process results in a flexible and informative region that can have an arbitrary shape, a property that existing methods lack. Second, we propose an extension of conformal prediction to the multivariate response setting that modifies any method to return sets with a pre-specified coverage level. The desired coverage is theoretically guaranteed in the finite-sample case for any distribution. Experiments conducted on both real and synthetic data show that our method constructs regions that are significantly smaller compared to existing techniques.
translated by 谷歌翻译
在这项工作中,我们对基本思想和新颖的发展进行了综述的综述,这是基于最小的假设的一种无创新的,无分配的,非参数预测的方法 - 能够以非常简单的方式预测集屈服在有限样本案例中,在统计意义上也有效。论文中提供的深入讨论涵盖了共形预测的理论基础,然后继续列出原始想法的更高级的发展和改编。
translated by 谷歌翻译
A flexible method is developed to construct a confidence interval for the frequency of a queried object in a very large data set, based on a much smaller sketch of the data. The approach requires no knowledge of the data distribution or of the details of the sketching algorithm; instead, it constructs provably valid frequentist confidence intervals for random queries using a conformal inference approach. After achieving marginal coverage for random queries under the assumption of data exchangeability, the proposed method is extended to provide stronger inferences accounting for possibly heterogeneous frequencies of different random queries, redundant queries, and distribution shifts. While the presented methods are broadly applicable, this paper focuses on use cases involving the count-min sketch algorithm and a non-linear variation thereof, to facilitate comparison to prior work. In particular, the developed methods are compared empirically to frequentist and Bayesian alternatives, through simulations and experiments with data sets of SARS-CoV-2 DNA sequences and classic English literature.
translated by 谷歌翻译
本文介绍了分类器校准原理和实践的简介和详细概述。校准的分类器正确地量化了与其实例明智的预测相关的不确定性或信心水平。这对于关键应用,最佳决策,成本敏感的分类以及某些类型的上下文变化至关重要。校准研究具有丰富的历史,其中几十年来预测机器学习作为学术领域的诞生。然而,校准兴趣的最近增加导致了新的方法和从二进制到多种子体设置的扩展。需要考虑的选项和问题的空间很大,并导航它需要正确的概念和工具集。我们提供了主要概念和方法的介绍性材料和最新的技术细节,包括适当的评分规则和其他评估指标,可视化方法,全面陈述二进制和多字数分类的HOC校准方法,以及几个先进的话题。
translated by 谷歌翻译
学习条件密度和识别影响整个分布的因素是数据驱动应用程序中的重要任务。常规方法主要与摘要统计数据合作,因此不足以进行全面的调查。最近,关于功能回归方法的发展,将密度曲线作为功能结果建模。开发此类模型的一个主要挑战在于非阴性的固有约束和密度结果功能空间的单位积分。为了克服这个基本问题,我们建议Wasserstein分销学习(WDL),这是一个柔性在尺度回归建模框架,始于Wasserstein距离$ W_2 $,作为密度结果空间的适当指标。然后,我们将半参数条件高斯混合模型(SCGMM)作为模型类$ \ mathfrak {f} \ otimes \ Mathcal {t} $作为模型类$ \ mathfrak {scgmm)介绍。生成的度量空间$(\ Mathfrak {f} \ otimes \ Mathcal {t},W_2)$满足所需的约束,并提供密集且封闭的功能子空间。为了拟合所提出的模型,我们基于增强树的大量最小化优化进一步开发了有效的算法。与以前的文献中的方法相比,WDL更好地表征了条件密度的非线性依赖性及其得出的摘要统计。我们通过模拟和现实世界应用来证明WDL框架的有效性。
translated by 谷歌翻译
组合和聚合技术可以显着提高预测准确性。这也适用于组合预测分布的概率预测方法。存在几个时变和自适应加权方案,例如贝叶斯模型平均(BMA)。然而,不同预报的质量不仅可以随时间而变化,而且可能在分布范围内变化。例如,在分布的中心,一些分布预测可能更准确,而其他分布预测可能更好地预测尾部。因此,我们介绍了一种新的加权方法,这些方法考虑了随着时间的推移和分布的差异。我们基于跨定量的聚合讨论逐个聚合的点耦合,该算盘相对于连续排序概率得分(CRP)。在分析了点CRPS学习的理论特性之后,我们讨论了基于分位数回归和专家建议的量级回归和预测的批量和在线学习的B型和在线学习的基于B型和在线学习的估算技术。我们证明,拟议的完全自适应伯尔斯坦在线聚合(BOA)用于点CRPS在线学习的方法具有最佳的收敛性。它们在模拟中确认和欧洲排放津贴(EUA)价格的概率预测研究。
translated by 谷歌翻译
内核生存分析模型借助内核函数估计了个体生存分布,该分布衡量了任意两个数据点之间的相似性。可以使用深内核存活模型来学习这种内核函数。在本文中,我们提出了一种名为“生存内核”的新的深内核生存模型,该模型以模型解释和理论分析的方式将大型数据集扩展到大型数据集。具体而言,根据最近开发的训练集压缩方案,用于分类和回归,将培训数据分为簇,称为内核网,我们将其扩展到生存分析设置。在测试时间,每个数据点表示为这些簇的加权组合,每个数据点可以可视化。对于生存核的特殊情况,我们在预测的生存分布上建立了有限样本误差,该误差是最佳的,该误差是最佳的。尽管使用上述内核网络压缩策略可以实现测试时间的可伸缩性,但训练过程中的可伸缩性是通过基于XGBoost(例如Xgboost)的暖启动程序和加速神经建筑搜索的启发式方法来实现的。在三个不同大小的标准生存分析数据集(大约300万个数据点)上,我们表明生存核具有很高的竞争力,并且在一致性指数方面经过测试的最佳基线。我们的代码可在以下网址找到:https://github.com/georgehc/survival-kernets
translated by 谷歌翻译
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
translated by 谷歌翻译
可预测的不确定性可以通过两个性能 - 校准和清晰度来表征。本文争辩说明这些属性的不确定性,并提出了在深度学习中强制执行它们的简单算法。我们的方法专注于校准 - 分布校准的最强概念 - 并通过用神经估计器拟合低维密度或定量函数来实施它。由此产生的方法比以前的分类和回归方式更简单,更广泛适用。凭经验,我们发现我们的方法改善了几个任务的预测性不确定性,具有最小的计算和实现开销。我们的见解表明,培训深度学习模式的简单和改进方式,导致应准确的不确定性,应利用,以改善下游应用程序的性能。
translated by 谷歌翻译
交叉验证是一种广泛使用的技术来估计预测误差,但其行为很复杂且不完全理解。理想情况下,人们想认为,交叉验证估计手头模型的预测错误,适合训练数据。我们证明,普通最小二乘拟合的线性模型并非如此。相反,它估计模型的平均预测误差适合于同一人群提取的其他看不见的训练集。我们进一步表明,这种现象发生在大多数流行的预测误差估计中,包括数据拆分,自举和锦葵的CP。接下来,从交叉验证得出的预测误差的标准置信区间可能的覆盖范围远低于所需水平。由于每个数据点都用于训练和测试,因此每个折叠的测量精度之间存在相关性,因此方差的通常估计值太小。我们引入了嵌套的交叉验证方案,以更准确地估计该方差,并从经验上表明,在传统的交叉验证间隔失败的许多示例中,这种修改导致间隔大致正确覆盖。
translated by 谷歌翻译
卷积图像分类器可以实现高预测的准确性,但是量化其不确定性仍然是尚未解决的挑战,阻碍了他们在结果环境中的部署。现有的不确定性量化技术(例如PLATT缩放)试图校准网络的概率估计,但它们没有正式的保证。我们提出了一种算法,该算法会修改任何分类器,以输出包含具有用户指定概率的真实标签的预测集,例如90%。该算法像PLATT缩放一样简单快捷,但为每个模型和数据集提供了正式的有限样本覆盖范围保证。我们的方法修改了现有的保形预测算法,从而通过在PLATT缩放后正规化不太可能的类别分数来提供更稳定的预测集。在具有RESNET-152和其他分类器的ImageNet和Imagenet-V2的实验中,我们的方案的表现优于现有方法,通过通常比独立PLATT缩放基线小的5到10个因素实现覆盖范围。
translated by 谷歌翻译
我们介绍了一类小说的预计方法,对实际线上的概率分布数据集进行统计分析,具有2-Wassersein指标。我们特别关注主成分分析(PCA)和回归。为了定义这些模型,我们通过将数据映射到合适的线性空间并使用度量投影运算符来限制Wassersein空间中的结果来利用与其弱利米结构密切相关的Wasserstein空间的表示。通过仔细选择切线,我们能够推出快速的经验方法,利用受约束的B样条近似。作为我们方法的副产品,我们还能够为PCA的PCA进行更快的例程来获得分布。通过仿真研究,我们将我们的方法与先前提出的方法进行比较,表明我们预计的PCA具有类似的性能,即使在拼盘下也是极其灵活的。研究了模型的若干理论性质,并证明了渐近一致性。讨论了两个真实世界应用于美国和风速预测的Covid-19死亡率。
translated by 谷歌翻译