机器学习模型通常培训端到端和监督设置,使用配对(输入,输出)数据。示例包括最近的超分辨率方法,用于在(低分辨率,高分辨率)图像上培训。然而,这些端到端的方法每当输入中存在分布偏移时需要重新训练(例如,夜间图像VS日光)或相关的潜在变量(例如,相机模糊或手动运动)。在这项工作中,我们利用最先进的(SOTA)生成模型(这里是Stylegan2)来构建强大的图像前提,这使得贝叶斯定理应用于许多下游重建任务。我们的方法是通过生成模型(BRGM)的贝叶斯重建,使用单个预先训练的发生器模型来解决不同的图像恢复任务,即超级分辨率和绘画,通过与不同的前向腐败模型相结合。我们将发电机模型的重量保持固定,并通过估计产生重建图像的输入潜在的跳过载体来重建图像来估计图像。我们进一步使用变分推理来近似潜伏向量的后部分布,我们对多种解决方案进行采样。我们在三个大型和多样化的数据集中展示了BRGM:(i)来自Flick的60,000个图像面向高质量的数据集(II)来自MIMIC III的高质量数据集(II)240,000胸X射线,(III)的组合收集5脑MRI数据集,具有7,329个扫描。在所有三个数据集和没有任何DataSet特定的HyperParameter调整,我们的简单方法会在超级分辨率和绘画上对当前的特定任务最先进的方法产生性能竞争力,同时更加稳定,而不需要任何培训。我们的源代码和预先训练的型号可在线获取:https://razvanmarinescu.github.io/brgm/。
translated by 谷歌翻译
The primary aim of single-image super-resolution is to construct a high-resolution (HR) image from a corresponding low-resolution (LR) input. In previous approaches, which have generally been supervised, the training objective typically measures a pixel-wise average distance between the super-resolved (SR) and HR images. Optimizing such metrics often leads to blurring, especially in high variance (detailed) regions. We propose an alternative formulation of the super-resolution problem based on creating realistic SR images that downscale correctly. We present a novel super-resolution algorithm addressing this problem, PULSE (Photo Upsampling via Latent Space Exploration), which generates high-resolution, realistic images at resolutions previously unseen in the literature. It accomplishes this in an entirely self-supervised fashion and is not confined to a specific degradation operator used during training, unlike previous methods (which require training on databases of LR-HR image pairs for supervised learning). Instead of starting with the LR image and slowly adding detail, PULSE traverses the high-resolution natural image manifold, searching for images that downscale to the original LR image. This is formalized through the "downscaling loss," which guides exploration through the latent space of a generative model. By leveraging properties of high-dimensional Gaussians, we restrict the search space to guarantee that our outputs are realistic. PULSE thereby generates super-resolved images that both are realistic and downscale correctly. We show extensive experimental results demonstrating the efficacy of our approach in the domain of face super-resolution (also known as face hallucination). We also present a discussion of the limitations and biases of the method as currently implemented with an accompanying model card with relevant metrics. Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously pos-sible.
translated by 谷歌翻译
在实践中,很难收集配对的培训数据,但是不合格的样本广泛存在。当前的方法旨在通过探索损坏的数据和清洁数据之间的关系来从未配对样本中生成合成的培训数据。这项工作提出了Lud-Vae,这是一种从边际分布中采样的数据中学习关节概率密度函数的深层生成方法。我们的方法基于一个经过精心设计的概率图形模型,在该模型中,干净和损坏的数据域在条件上是独立的。使用变异推断,我们最大化证据下限(ELBO)以估计关节概率密度函数。此外,我们表明在推理不变假设下没有配对样品的情况下,ELBO是可以计算的。该属性在未配对的环境中提供了我们方法的数学原理。最后,我们将我们的方法应用于现实世界图像denoising,超分辨率和低光图像增强任务,并使用Lud-vae生成的合成数据训练模型。实验结果验证了我们方法比其他方法的优势。
translated by 谷歌翻译
本文提出了图像恢复的新变异推理框架和一个卷积神经网络(CNN)结构,该结构可以解决所提出的框架所描述的恢复问题。较早的基于CNN的图像恢复方法主要集中在网络体系结构设计或培训策略上,具有非盲方案,其中已知或假定降解模型。为了更接近现实世界的应用程序,CNN还接受了整个数据集的盲目培训,包括各种降解。然而,给定有多样化的图像的高质量图像的条件分布太复杂了,无法通过单个CNN学习。因此,也有一些方法可以提供其他先验信息来培训CNN。与以前的方法不同,我们更多地专注于基于贝叶斯观点以及如何重新重新重构目标的恢复目标。具体而言,我们的方法放松了原始的后推理问题,以更好地管理子问题,因此表现得像分裂和互动方案。结果,与以前的框架相比,提出的框架提高了几个恢复问题的性能。具体而言,我们的方法在高斯denoising,现实世界中的降噪,盲图超级分辨率和JPEG压缩伪像减少方面提供了最先进的性能。
translated by 谷歌翻译
图像deBlurring是一种对给定输入图像的多种合理的解决方案是一个不适的问题。然而,大多数现有方法产生了清洁图像的确定性估计,并且训练以最小化像素级失真。已知这些指标与人类感知差,并且通常导致不切实际的重建。我们基于条件扩散模型介绍了盲脱模的替代框架。与现有技术不同,我们训练一个随机采样器,它改进了确定性预测器的输出,并且能够为给定输入产生多样化的合理重建。这导致跨多个标准基准的现有最先进方法的感知质量的显着提高。与典型的扩散模型相比,我们的预测和精致方法也能实现更有效的采样。结合仔细调整的网络架构和推理过程,我们的方法在PSNR等失真度量方面具有竞争力。这些结果表明了我们基于扩散和挑战的扩散和挑战的策略的显着优势,生产单一确定性重建的广泛使用策略。
translated by 谷歌翻译
仅使用少量数据学习神经网络是一个重要的研究主题,具有巨大的应用潜力。在本文中,我们介绍了基于归一化流量的成像中反问题的变异建模的常规化器。我们的常规器称为PatchNR,涉及在很少的图像的贴片上学习的正常流。特别是,培训独立于考虑的逆问题,因此可以将相同的正规化程序用于在同一类图像上作用的不同前向操作员。通过研究斑块的分布与整个图像类别的分布,我们证明我们的变分模型确实是一种地图方法。如果有其他监督信息,我们的模型可以推广到有条件的补丁。材料图像和低剂量或限量角度计算机断层扫描(CT)的层分辨率的数值示例表明,我们的方法在具有相似假设的方法之间提供了高质量的结果,但仅需要很少的数据。
translated by 谷歌翻译
Image super-resolution is a one-to-many problem, but most deep-learning based methods only provide one single solution to this problem. In this work, we tackle the problem of diverse super-resolution by reusing VD-VAE, a state-of-the art variational autoencoder (VAE). We find that the hierarchical latent representation learned by VD-VAE naturally separates the image low-frequency information, encoded in the latent groups at the top of the hierarchy, from the image high-frequency details, determined by the latent groups at the bottom of the latent hierarchy. Starting from this observation, we design a super-resolution model exploiting the specific structure of VD-VAE latent space. Specifically, we train an encoder to encode low-resolution images in the subset of VD-VAE latent space encoding the low-frequency information, and we combine this encoder with VD-VAE generative model to sample diverse super-resolved version of a low-resolution input. We demonstrate the ability of our method to generate diverse solutions to the super-resolution problem on face super-resolution with upsampling factors x4, x8, and x16.
translated by 谷歌翻译
Learning a good image prior is a long-term goal for image restoration and manipulation. While existing methods like deep image prior (DIP) capture low-level image statistics, there are still gaps toward an image prior that captures rich image semantics including color, spatial coherence, textures, and high-level concepts. This work presents an effective way to exploit the image prior captured by a generative adversarial network (GAN) trained on large-scale natural images. As shown in Fig. 1, the deep generative prior (DGP) provides compelling results to restore missing semantics, e.g., color, patch, resolution, of various degraded images. It also enables diverse image manipulation including random jittering, image morphing, and category transfer. Such highly flexible restoration and manipulation are made possible through relaxing the assumption of existing GAN-inversion methods, which tend to fix the generator. Notably, we allow the generator to be fine-tuned on-the-fly in a progressive manner regularized by feature distance obtained by the discriminator in GAN. We show that these easy-to-implement and practical changes help preserve the reconstruction to remain in the manifold of nature image, and thus lead to more precise and faithful reconstruction for real images. Code is available at https://github.com/XingangPan/deepgenerative-prior.
translated by 谷歌翻译
盲图修复(IR)是计算机视觉中常见但充满挑战的问题。基于经典模型的方法和最新的深度学习(DL)方法代表了有关此问题的两种不同方法,每种方法都有自己的优点和缺点。在本文中,我们提出了一种新颖的盲图恢复方法,旨在整合它们的两种优势。具体而言,我们为盲IR构建了一个普通的贝叶斯生成模型,该模型明确描绘了降解过程。在此提出的模型中,PICEL的非I.I.D。高斯分布用于适合图像噪声。它的灵活性比简单的I.I.D。在大多数常规方法中采用的高斯或拉普拉斯分布,以处理图像降解中包含的更复杂的噪声类型。为了解决该模型,我们设计了一个变异推理算法,其中所有预期的后验分布都被参数化为深神经网络,以提高其模型能力。值得注意的是,这种推论算法诱导统一的框架共同处理退化估计和图像恢复的任务。此外,利用了前一种任务中估计的降解信息来指导后一种红外过程。对两项典型的盲型IR任务进行实验,即图像降解和超分辨率,表明所提出的方法比当前最新的方法实现了卓越的性能。
translated by 谷歌翻译
Deep convolutional networks have become a popular tool for image generation and restoration. Generally, their excellent performance is imputed to their ability to learn realistic image priors from a large number of example images. In this paper, we show that, on the contrary, the structure of a generator network is sufficient to capture a great deal of low-level image statistics prior to any learning. In order to do so, we show that a randomly-initialized neural network can be used as a handcrafted prior with excellent results in standard inverse problems such as denoising, superresolution, and inpainting. Furthermore, the same prior can be used to invert deep neural representations to diagnose them, and to restore images based on flash-no flash input pairs.
translated by 谷歌翻译
超级分辨率是一个不良问题,其中基本真理的高分辨率图像仅代表合理解决方案的空间中的一种可能性。然而,主导范式是采用像素 - 明智的损失,例如L_1,其驱动预测模糊的平均值。当与对抗性损失相结合时,这导致了根本相互矛盾的目标,这降低了最终质量。我们通过重新审视L_1丢失来解决此问题,并表明它对应于单层条件流程。灵感来自这一关系,我们探讨了一般流动作为L_1目标的忠诚替代品。我们证明,在与对抗性损失结合时,更深流量的灵活性导致更好的视觉质量和一致性。我们对三个数据集和比例因子进行广泛的用户研究,其中我们的方法被证明了为光逼真的超分辨率优于最先进的方法。代码和培训的型号可在:git.io/adflow
translated by 谷歌翻译
edu.hk (a) Image Reconstruction (b) Image Colorization (c) Image Super-Resolution (d) Image Denoising (e) Image Inpainting (f) Semantic Manipulation Figure 1: Multi-code GAN prior facilitates many image processing applications using the reconstruction from fixed PGGAN [23] models.
translated by 谷歌翻译
通常,层析成像是一个不适合的反问题。通常,从断层扫描测量中获得了拟距对象的单个正则图像估计。但是,可能有多个与相同的测量数据一致的对象。生成此类替代解决方案的能力很重要,因为它可以实现成像系统的新评估。原则上,这可以通过后采样方法来实现。近年来,已经采用了深层神经网络进行后验采样,结果令人鼓舞。但是,此类方法尚未用于大规模断层成像应用。另一方面,经验抽样方法在大规模成像系统上可能是可行的,并且可以对实际应用实现不确定性量化。经验抽样涉及在随机优化框架内求解正规化的逆问题,以获得替代数据一致的解决方案。在这项工作中,提出了一种新的经验抽样方法,该方法计算了与同一获得的测量数据一致的层析成像逆问题的多个解决方案。该方法通过在基于样式的生成对抗网络(stylegan)的潜在空间中反复解决优化问题的运行,并受到通过潜在空间探索(PULSE)方法的照片启发,该方法是为超分辨率任务开发而成的。通过涉及两种程式化的层析成像模式的数值研究来证明和分析所提出的方法。这些研究确定了该方法执行有效的经验抽样和不确定性定量的能力。
translated by 谷歌翻译
生成照片 - 现实图像,语义编辑和表示学习是高分辨率生成模型的许多潜在应用中的一些。最近在GAN的进展将它们建立为这些任务的绝佳选择。但是,由于它们不提供推理模型,因此使用GaN潜在空间无法在实际图像上完成诸如分类的图像编辑或下游任务。尽管培训了训练推理模型或设计了一种迭代方法来颠覆训练有素的发生器,但之前的方法是数据集(例如人类脸部图像)和架构(例如样式)。这些方法是非延伸到新型数据集或架构的。我们提出了一般框架,该框架是不可知的架构和数据集。我们的主要识别是,通过培训推断和生成模型在一起,我们允许它们彼此适应并收敛到更好的质量模型。我们的\ textbf {invang},可逆GaN的简短,成功将真实图像嵌入到高质量的生成模型的潜在空间。这使我们能够执行图像修复,合并,插值和在线数据增强。我们展示了广泛的定性和定量实验。
translated by 谷歌翻译
The introduction of high-quality image generation models, particularly the StyleGAN family, provides a powerful tool to synthesize and manipulate images. However, existing models are built upon high-quality (HQ) data as desired outputs, making them unfit for in-the-wild low-quality (LQ) images, which are common inputs for manipulation. In this work, we bridge this gap by proposing a novel GAN structure that allows for generating images with controllable quality. The network can synthesize various image degradation and restore the sharp image via a quality control code. Our proposed QC-StyleGAN can directly edit LQ images without altering their quality by applying GAN inversion and manipulation techniques. It also provides for free an image restoration solution that can handle various degradations, including noise, blur, compression artifacts, and their mixtures. Finally, we demonstrate numerous other applications such as image degradation synthesis, transfer, and interpolation.
translated by 谷歌翻译
我们介绍了一种使用Nerf式生成模型解决逆问题的新框架。给出了单一的2-D图像和已知相机参数的3-D场景重建问题感兴趣。我们展示了天真地优化潜伏的空间,导致伪影和糟糕的新颖观看渲染。我们将此问题归因于3-D几何形状清晰的音量障碍物,并在新颖视野的渲染中变得可见。我们提出了一种新颖的辐射场正则化方法,以获得更好的3-D表面和改进的新颖观点,给定单一视图观察。我们的方法自然地扩展到一般逆问题,包括若有所述,其中仅部分地观察到单一视图。我们通过实验评估我们的方法,实现视觉改进和性能在广泛的任务中升高了基线。与以前的现有技术相比,我们的方法达到了30-40美元的MSE减免和15-25美元的LPIP损失减少。
translated by 谷歌翻译
计算机视觉中有意义的不确定性量化需要有关语义信息的推理 - 例如,照片中的人的头发颜色或街上汽车的位置。为此,最近在生成建模方面的突破使我们能够在分离的潜在空间中代表语义信息,但是在语义潜在变量上提供不确定性仍然具有挑战性。在这项工作中,我们提供了原则上的不确定性间隔,这些间隔可保证为任何潜在的生成模型包含真正的语义因素。该方法执行以下操作:(1)它使用分位数回归来输出潜在空间中每个元素的启发式不确定性间隔(2)校准了这些不确定性,以使它们包含新的,看不见的输入的潜在值。然后可以通过发电机传播这些校准间隔的终点,以为每个语义因素产生可解释的不确定性可视化。该技术可靠地传达了语义上有意义的,有原则和实例自适应的不确定性,例如图像超分辨率和图像完成。
translated by 谷歌翻译
随着脑成像技术和机器学习工具的出现,很多努力都致力于构建计算模型来捕获人脑中的视觉信息的编码。最具挑战性的大脑解码任务之一是通过功能磁共振成像(FMRI)测量的脑活动的感知自然图像的精确重建。在这项工作中,我们调查了来自FMRI的自然图像重建的最新学习方法。我们在架构设计,基准数据集和评估指标方面检查这些方法,并在标准化评估指标上呈现公平的性能评估。最后,我们讨论了现有研究的优势和局限,并提出了潜在的未来方向。
translated by 谷歌翻译
我们表明,诸如Stylegan和Biggan之类的预训练的生成对抗网络(GAN)可以用作潜在银行,以提高图像超分辨率的性能。尽管大多数现有面向感知的方法试图通过以对抗性损失学习来产生现实的产出,但我们的方法,即生成的潜在银行(GLEAN),通过直接利用预先训练的gan封装的丰富而多样的先验来超越现有实践。但是,与需要在运行时需要昂贵的图像特定优化的普遍的GAN反演方法不同,我们的方法只需要单个前向通行证才能修复。可以轻松地将Glean合并到具有多分辨率Skip连接的简单编码器银行decoder架构中。采用来自不同生成模型的先验,可以将收集到各种类别(例如人的面孔,猫,建筑物和汽车)。我们进一步提出了一个轻巧的Glean,名为Lightglean,该版本仅保留Glean中的关键组成部分。值得注意的是,Lightglean仅由21%的参数和35%的拖鞋组成,同时达到可比的图像质量。我们将方法扩展到不同的任务,包括图像着色和盲图恢复,广泛的实验表明,与现有方法相比,我们提出的模型表现出色。代码和模型可在https://github.com/open-mmlab/mmediting上找到。
translated by 谷歌翻译
通过将图像形成过程分解成逐个申请的去噪自身额,扩散模型(DMS)实现了最先进的合成导致图像数据和超越。另外,它们的配方允许引导机构来控制图像生成过程而不会再刷新。然而,由于这些模型通常在像素空间中直接操作,因此强大的DMS的优化通常消耗数百个GPU天,并且由于顺序评估,推理是昂贵的。为了在保留其质量和灵活性的同时启用有限计算资源的DM培训,我们将它们应用于强大的佩带自动化器的潜在空间。与以前的工作相比,这种代表上的培训扩散模型允许第一次达到复杂性降低和细节保存之间的近乎最佳点,极大地提高了视觉保真度。通过将跨关注层引入模型架构中,我们将扩散模型转化为强大而柔性的发电机,以进行诸如文本或边界盒和高分辨率合成的通用调节输入,以卷积方式变得可以实现。我们的潜在扩散模型(LDMS)实现了一种新的技术状态,可在各种任务中进行图像修复和高竞争性能,包括无条件图像生成,语义场景合成和超级分辨率,同时与基于像素的DMS相比显着降低计算要求。代码可在https://github.com/compvis/lattent-diffusion获得。
translated by 谷歌翻译