在本文中,我们研究了自我监督的学习方法,尤其是VICREG,以提供对其构建的信息理论理解。作为第一步,我们演示了如何获得确定性网络的信息理论数量,为依赖随机模型的先前工作提供了可能的替代方法。这使我们能够证明如何从第一原则及其对数据分布的假设中发现的(重新)。此外,我们从经验上证明了我们的假设的有效性,证实了我们对Vicreg的新理解。最后,我们认为,我们获得的派生和见解可以推广到许多其他SSL方法,为SSL和转移学习的理论和实际理解开辟了新的途径。
translated by 谷歌翻译
Self-supervised learning is a popular and powerful method for utilizing large amounts of unlabeled data, for which a wide variety of training objectives have been proposed in the literature. In this study, we perform a Bayesian analysis of state-of-the-art self-supervised learning objectives and propose a unified formulation based on likelihood learning. Our analysis suggests a simple method for integrating self-supervised learning with generative models, allowing for the joint training of these two seemingly distinct approaches. We refer to this combined framework as GEDI, which stands for GEnerative and DIscriminative training. Additionally, we demonstrate an instantiation of the GEDI framework by integrating an energy-based model with a cluster-based self-supervised learning model. Through experiments on synthetic and real-world data, including SVHN, CIFAR10, and CIFAR100, we show that GEDI outperforms existing self-supervised learning strategies in terms of clustering performance by a wide margin. We also demonstrate that GEDI can be integrated into a neural-symbolic framework to address tasks in the small data regime, where it can use logical constraints to further improve clustering and classification performance.
translated by 谷歌翻译
自我监督的学习(SSL)推测,投入和成对的积极关系足以学习有意义的表示。尽管SSL最近达到了一个里程碑:在许多模式下,胜过监督的方法\点,理论基础是有限的,特定于方法的,并且未能向从业者提供原则上的设计指南。在本文中,我们提出了一个统一的框架,这些框架是在光谱歧管学习的掌舵下,以解决这些局限性。通过这项研究的过程,我们将严格证明Vic​​reg,Simclr,Barlowtwins等。对应于诸如Laplacian eigenmaps,多维缩放等方面的同名光谱方法。然后,此统一将使我们能够获得(i)每种方法的闭合形式的最佳表示,(ii)每种方法的线性态度中的封闭形式的最佳网络参数,(iii)在期间使用的成对关系的影响对每个数量和下游任务性能的培训,以及最重要的是,(iv)分别针对全球和局部光谱嵌入方法的对比度和非对抗性方法之间的第一个理论桥梁,暗示了每种方法的益处和限制。例如,(i)如果成对关系与下游任务一致,则可以成功采用任何SSL方法并将恢复监督方法,但是在低数据状态下,Vicreg的不变性超参数应该很高; (ii)如果成对关系与下游任务未对准,则与SIMCLR或BARLOWTWINS相比,具有小型不变性高参数的VICREG。
translated by 谷歌翻译
我们从统计依赖性角度接近自我监督的图像表示学习,提出与希尔伯特 - 施密特独立性标准(SSL-HSIC)自我监督的学习。 SSL-HSIC最大化图像和图像标识的变换表示之间的依赖性,同时最小化这些表示的核化方差。该框架产生了对Infonce的新了解,在不同转换之间的相互信息(MI)上的变分下限。虽然已知MI本身具有可能导致学习无意义的表示的病理学,但其绑定表现得更好:我们表明它隐含地近似于SSL-HSIC(具有略微不同的规范器)。我们的方法还向我们深入了解Byol,一种无与伦比的SSL方法,因为SSL-HSIC类似地了解了当地的样本邻居。 SSL-HSIC允许我们在批量大小中直接在时间线性上直接优化统计依赖性,而无需限制数据假设或间接相互信息估计。 SSL-HSIC培训或没有目标网络,SSL-HSIC与Imagenet的标准线性评估相匹配,半监督学习和转移到其他分类和视觉任务,如语义分割,深度估计和对象识别等。代码可在https://github.com/deepmind/ssl_hsic提供。
translated by 谷歌翻译
Estimating and optimizing Mutual Information (MI) is core to many problems in machine learning; however, bounding MI in high dimensions is challenging. To establish tractable and scalable objectives, recent work has turned to variational bounds parameterized by neural networks, but the relationships and tradeoffs between these bounds remains unclear. In this work, we unify these recent developments in a single framework. We find that the existing variational lower bounds degrade when the MI is large, exhibiting either high bias or high variance. To address this problem, we introduce a continuum of lower bounds that encompasses previous bounds and flexibly trades off bias and variance. On high-dimensional, controlled problems, we empirically characterize the bias and variance of the bounds and their gradients and demonstrate the effectiveness of our new bounds for estimation and representation learning.
translated by 谷歌翻译
自我监督的表示学习解决辅助预测任务(称为借口任务),而不需要标记数据以学习有用的语义表示。这些借口任务仅使用输入特征,例如预测缺失的图像修补程序,从上下文中恢复图像的颜色通道,或者预测文本中的缺失单词;然而,预测该\ Texit {已知}信息有助于学习对下游预测任务的学习陈述。我们提供利用某些{\ EM重建}借口任务之间的统计连接的机制,以保证学习良好代表性。正式地,我们量化了借口任务的组件之间的近似独立性(标签和潜在变量的条件)允许我们学习可以通过训练在学习表示的顶部的线性层来解决下游任务的表示。我们证明了线性层即使对于复杂的地面真理函数类,也会产生小的近似误差,并且将急剧减少标记的样本复杂性。接下来,我们展示了我们方法的简单修改,导致非线性CCA,类似于流行的Simsiam算法,并显示了非线性CCA的类似保证。
translated by 谷歌翻译
自我监督学习中的最新作品通过依靠对比度学习范式来推动最先进的工作,该范式通过推动正面对或从同一班级中的类似示例来学习表示形式,同时将负面对截然不同。尽管取得了经验的成功,但理论基础是有限的 - 先前的分析假设鉴于同一类标签的正对有条件独立性,但是最近的经验应用使用了密切相关的正对(即同一图像的数据增强)。我们的工作分析了对比度学习,而无需在数据上使用增强图的新概念假设正对的有条件独立性。此图中的边缘连接相同数据的增强,而地面实际类别自然形成了连接的子图。我们提出了在人口增强图上执行光谱分解的损失,并且可以简洁地作为对神经净表示的对比学习目标。最小化此目标会导致在线性探针评估下具有可证明准确性的功能。通过标准的概括范围,在最大程度地减少训练对比度损失时,这些准确性也可以保证。从经验上讲,我们目标所学的功能可以匹配或胜过基准视觉数据集上的几个强基线。总的来说,这项工作为对比度学习提供了首次可证明的分析,在该学习中,线性探针评估的保证可以适用于现实的经验环境。
translated by 谷歌翻译
速率 - 失真(R-D)函数,信息理论中的关键数量,其特征在于,通过任何压缩算法,通过任何压缩算法将数据源可以压缩到保真标准的基本限制。随着研究人员推动了不断提高的压缩性能,建立给定数据源的R-D功能不仅具有科学的兴趣,而且还在可能的空间上揭示了改善压缩算法的可能性。以前的解决此问题依赖于数据源上的分布假设(Gibson,2017)或仅应用于离散数据。相比之下,本文使得第一次尝试播放常规(不一定是离散的)源仅需要i.i.d的算法的算法。数据样本。我们估计高斯和高尺寸香蕉形源的R-D三明治界,以及GaN生成的图像。我们在自然图像上的R-D上限表示在各种比特率的PSNR中提高最先进的图像压缩方法的性能的空间。
translated by 谷歌翻译
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning.
translated by 谷歌翻译
通过最小化同一图像的两个视图之间的距离来最大程度地减少自我监督学习的非对比度方法(例如BYOL和SIMSIAM)。这些方法在实践中取得了非凡的表现,但是理论理解落在了背后。天等。 2021解释了为什么表示形式不会崩溃到零,但是如何学习该功能仍然是神秘的。在我们的工作中,我们在线性网络中证明了非对抗性方法,学习了理想的投影矩阵,并降低了下游任务的样本复杂性。我们的分析表明,重量衰减是一个隐式阈值,它在数据增强下丢弃具有较高差异的特征,并保持差异较低的功能。受我们的理论的启发,我们通过在Tian等人的原始直接销售算法中删除特征分解步骤,从而设计了更简单,更有效的算法直接副本。 2021.我们的实验表明,直接竞争对手甚至超过了STL-10,CIFAR-10,CIFAR-100和IMAGENET的表现。
translated by 谷歌翻译
适应数据分布的结构(例如对称性和转型Imarerces)是机器学习中的重要挑战。通过架构设计或通过增强数据集,可以内在学习过程中内置Inhormces。两者都需要先验的了解对称性的确切性质。缺乏这种知识,从业者求助于昂贵且耗时的调整。为了解决这个问题,我们提出了一种新的方法来学习增强变换的分布,以新的\ emph {转换风险最小化}(trm)框架。除了预测模型之外,我们还优化了从假说空间中选择的转换。作为算法框架,我们的TRM方法是(1)有效(共同学习增强和模型,以\ emph {单训练环}),(2)模块化(使用\ emph {任何训练算法),以及(3)一般(处理\ \ ich {离散和连续}增强)。理论上与标准风险最小化的TRM比较,并在其泛化误差上给出PAC-Bayes上限。我们建议通过块组成的新参数化优化富裕的增强空间,导致新的\ EMPH {随机成分增强学习}(SCALE)算法。我们在CIFAR10 / 100,SVHN上使用先前的方法(快速自身自动化和武术器)进行实际比较规模。此外,我们表明规模可以在数据分布中正确地学习某些对称性(恢复旋转Mnist上的旋转),并且还可以改善学习模型的校准。
translated by 谷歌翻译
自我监督的学习允许AI系统使用不需要昂贵的标签的任务从大量数据中学习有效表示。模式崩溃,即为所有输入产生相同表示形式的模型,是许多自我监督学习方法的核心问题,可以使自我监督任务(例如匹配输入的变形变体)无效。在本文中,我们认为,同一输入的替代潜在表示之间信息最大化的直接应用自然解决了崩溃问题并实现了竞争性的经验结果。我们提出了一种自我监督的学习方法Corinfomax,该方法使用了基于二阶统计的共同信息度量,以反映其参数之间的相关性水平。在同一输入的替代表示之间最大化此相关信息度量有两个目的:(1)它通过生成具有非脱位协方差的特征向量来避免崩溃问题; (2)通过增加它们之间的线性依赖性,它在替代表示之间建立了相关性。提出的信息最大化客观的近似简化为基于欧几里得距离的目标函数,该目标函数由特征协方差矩阵的对数确定因素正规化。正则术语是针对特征空间退化的自然障碍。因此,除了避免完全输出崩溃到一个点外,提出的方法还通过鼓励信息在整个特征空间中的传播来防止尺寸崩溃。数值实验表明,相对于最先进的SSL方法,Corinfomax取得更好或竞争性的性能结果。
translated by 谷歌翻译
尽管自我监督学习(SSL)方法取得了经验成功,但尚不清楚其表示的哪些特征导致了高下游精度。在这项工作中,我们表征了SSL表示应该满足的属性。具体而言,我们证明了必要和充分的条件,因此,对于给出的数据增强的任何任务,在该表示形式上训练的所需探针(例如,线性或MLP)具有完美的准确性。这些要求导致一个统一的概念框架,用于改善现有的SSL方法并得出新方法。对于对比度学习,我们的框架规定了对以前的方法(例如使用不对称投影头)的简单但重大改进。对于非对比度学习,我们使用框架来得出一个简单新颖的目标。我们所得的SSL算法在标准基准测试上的表现优于基线,包括Imagenet线性探测的SHAV+多螺旋桨。
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
变异推理(VI)的核心原理是将计算复杂后概率密度计算的统计推断问题转换为可拖动的优化问题。该属性使VI比几种基于采样的技术更快。但是,传统的VI算法无法扩展到大型数据集,并且无法轻易推断出越野数据点,而无需重新运行优化过程。该领域的最新发展,例如随机,黑框和摊销VI,已帮助解决了这些问题。如今,生成的建模任务广泛利用摊销VI来实现其效率和可扩展性,因为它利用参数化函数来学习近似的后验密度参数。在本文中,我们回顾了各种VI技术的数学基础,以构成理解摊销VI的基础。此外,我们还概述了最近解决摊销VI问题的趋势,例如摊销差距,泛化问题,不一致的表示学习和后验崩溃。最后,我们分析了改善VI优化的替代差异度量。
translated by 谷歌翻译
期望 - 最大化(EM)算法是一种简单的元叠加,当观察到的数据中缺少测量值或数据由可观察到的数据组成时,它已多年来用作统计推断的方法。它的一般属性进行了充分的研究,而且还有无数方法将其应用于个人问题。在本文中,我们介绍了$ em $ $ and算法,EM算法的信息几何公式及其扩展和应用程序以及各种问题。具体而言,我们将看到,可以制定一个异常稳定推理算法,用于计算通道容量的算法,概率单纯性的参数估计方法,特定的多变量分析方法,例如概率模型中的主要组件分析和模态回归中的主成分分析,基质分解和学习生成模型,这些模型最近从几何学角度引起了深度学习的关注。
translated by 谷歌翻译
In deep learning, neural networks serve as noisy channels between input data and its representation. This perspective naturally relates deep learning with the pursuit of constructing channels with optimal performance in information transmission and representation. While considerable efforts are concentrated on realizing optimal channel properties during network optimization, we study a frequently overlooked possibility that neural networks can be initialized toward optimal channels. Our theory, consistent with experimental validation, identifies primary mechanics underlying this unknown possibility and suggests intrinsic connections between statistical physics and deep learning. Unlike the conventional theories that characterize neural networks applying the classic mean-filed approximation, we offer analytic proof that this extensively applied simplification scheme is not valid in studying neural networks as information channels. To fill this gap, we develop a corrected mean-field framework applicable for characterizing the limiting behaviors of information propagation in neural networks without strong assumptions on inputs. Based on it, we propose an analytic theory to prove that mutual information maximization is realized between inputs and propagated signals when neural networks are initialized at dynamic isometry, a case where information transmits via norm-preserving mappings. These theoretical predictions are validated by experiments on real neural networks, suggesting the robustness of our theory against finite-size effects. Finally, we analyze our findings with information bottleneck theory to confirm the precise relations among dynamic isometry, mutual information maximization, and optimal channel properties in deep learning.
translated by 谷歌翻译
使用信息理论原理,我们考虑迭代半监督学习(SSL)算法的概括误差(Gen-Error),这些算法迭代地生成了大量未标记数据的伪标记,以逐步完善模型参数。与{\ em绑定} Gen-Error的大多数以前的作品相反,我们为Gen-Error提供了{\ em Exact}的表达,并将其专门为二进制高斯混合模型。我们的理论结果表明,当阶级条件差异不大时,Gen-Error随着迭代次数的数量而减少,但很快就会饱和。另一方面,如果类的条件差异(因此,类别之间的重叠量)很大,则Gen-Error随迭代次数的增加而增加。为了减轻这种不良效果,我们表明正则化可以减少Gen-Error。通过对MNIST和CIFAR数据集进行的广泛实验来证实理论结果,我们注意到,对于易于分类的类别,经过几次伪标记的迭代,Gen-Error会改善,但此后饱和,并且更难难以实现。区分类别,正则化改善了概括性能。
translated by 谷歌翻译
过度装备数据是与生成模型的众所周知的现象,其模拟太紧密(或准确)的特定数据实例,因此可能无法可靠地预测未来的观察。在实践中,这种行为是由各种 - 有时启发式的 - 正则化技术控制,这是通过将上限发展到泛化误差的激励。在这项工作中,我们研究依赖于在跨熵损失的随机编码上依赖于随机编码的泛化误差,这通常用于深度学习进行分类问题。我们导出界定误差,示出存在根据编码分布随机生成的输入特征和潜在空间中的相应表示之间的相互信息界定的制度。我们的界限提供了对所谓的各种变分类分类中的概括的信息理解,其由Kullback-Leibler(KL)发散项进行规则化。这些结果为变分推理方法提供了高度流行的KL术语的理论理由,这些方法已经认识到作为正则化罚款有效行动。我们进一步观察了具有良好研究概念的连接,例如变形自动化器,信息丢失,信息瓶颈和Boltzmann机器。最后,我们对Mnist和CiFar数据集进行了数值实验,并表明相互信息确实高度代表了泛化误差的行为。
translated by 谷歌翻译
The framework of variational autoencoders allows us to efficiently learn deep latent-variable models, such that the model's marginal distribution over observed variables fits the data. Often, we're interested in going a step further, and want to approximate the true joint distribution over observed and latent variables, including the true prior and posterior distributions over latent variables. This is known to be generally impossible due to unidentifiability of the model. We address this issue by showing that for a broad family of deep latentvariable models, identification of the true joint distribution over observed and latent variables is actually possible up to very simple transformations, thus achieving a principled and powerful form of disentanglement. Our result requires a factorized prior distribution over the latent variables that is conditioned on an additionally observed variable, such as a class label or almost any other observation. We build on recent developments in nonlinear ICA, which we extend to the case with noisy or undercomplete observations, integrated in a maximum likelihood framework. The result also trivially contains identifiable flow-based generative models as a special case.
translated by 谷歌翻译