自我监督的表示学习解决辅助预测任务(称为借口任务),而不需要标记数据以学习有用的语义表示。这些借口任务仅使用输入特征,例如预测缺失的图像修补程序,从上下文中恢复图像的颜色通道,或者预测文本中的缺失单词;然而,预测该\ Texit {已知}信息有助于学习对下游预测任务的学习陈述。我们提供利用某些{\ EM重建}借口任务之间的统计连接的机制,以保证学习良好代表性。正式地,我们量化了借口任务的组件之间的近似独立性(标签和潜在变量的条件)允许我们学习可以通过训练在学习表示的顶部的线性层来解决下游任务的表示。我们证明了线性层即使对于复杂的地面真理函数类,也会产生小的近似误差,并且将急剧减少标记的样本复杂性。接下来,我们展示了我们方法的简单修改,导致非线性CCA,类似于流行的Simsiam算法,并显示了非线性CCA的类似保证。
translated by 谷歌翻译
对比学习在各种自我监督的学习任务中取得了最先进的表现,甚至优于其监督的对应物。尽管其经验成功,但对为什么对比学习作品的理论认识仍然有限。在本文中,(i)我们证明,对比学习胜过AutoEncoder,一种经典无监督的学习方法,适用于特征恢复和下游任务;(ii)我们还说明标记数据在监督对比度学习中的作用。这为最近的发现提供了理论支持,即对标签对比学习的结果提高了域名下游任务中学识表的表现,但它可能会损害转移学习的性能。我们通过数值实验验证了我们的理论。
translated by 谷歌翻译
自我监督学习中的最新作品通过依靠对比度学习范式来推动最先进的工作,该范式通过推动正面对或从同一班级中的类似示例来学习表示形式,同时将负面对截然不同。尽管取得了经验的成功,但理论基础是有限的 - 先前的分析假设鉴于同一类标签的正对有条件独立性,但是最近的经验应用使用了密切相关的正对(即同一图像的数据增强)。我们的工作分析了对比度学习,而无需在数据上使用增强图的新概念假设正对的有条件独立性。此图中的边缘连接相同数据的增强,而地面实际类别自然形成了连接的子图。我们提出了在人口增强图上执行光谱分解的损失,并且可以简洁地作为对神经净表示的对比学习目标。最小化此目标会导致在线性探针评估下具有可证明准确性的功能。通过标准的概括范围,在最大程度地减少训练对比度损失时,这些准确性也可以保证。从经验上讲,我们目标所学的功能可以匹配或胜过基准视觉数据集上的几个强基线。总的来说,这项工作为对比度学习提供了首次可证明的分析,在该学习中,线性探针评估的保证可以适用于现实的经验环境。
translated by 谷歌翻译
Many problems in causal inference and economics can be formulated in the framework of conditional moment models, which characterize the target function through a collection of conditional moment restrictions. For nonparametric conditional moment models, efficient estimation often relies on preimposed conditions on various measures of ill-posedness of the hypothesis space, which are hard to validate when flexible models are used. In this work, we address this issue by proposing a procedure that automatically learns representations with controlled measures of ill-posedness. Our method approximates a linear representation defined by the spectral decomposition of a conditional expectation operator, which can be used for kernelized estimators and is known to facilitate minimax optimal estimation in certain settings. We show this representation can be efficiently estimated from data, and establish L2 consistency for the resulting estimator. We evaluate the proposed method on proximal causal inference tasks, exhibiting promising performance on high-dimensional, semi-synthetic data.
translated by 谷歌翻译
尽管自我监督学习(SSL)方法取得了经验成功,但尚不清楚其表示的哪些特征导致了高下游精度。在这项工作中,我们表征了SSL表示应该满足的属性。具体而言,我们证明了必要和充分的条件,因此,对于给出的数据增强的任何任务,在该表示形式上训练的所需探针(例如,线性或MLP)具有完美的准确性。这些要求导致一个统一的概念框架,用于改善现有的SSL方法并得出新方法。对于对比度学习,我们的框架规定了对以前的方法(例如使用不对称投影头)的简单但重大改进。对于非对比度学习,我们使用框架来得出一个简单新颖的目标。我们所得的SSL算法在标准基准测试上的表现优于基线,包括Imagenet线性探测的SHAV+多螺旋桨。
translated by 谷歌翻译
We study a natural extension of classical empirical risk minimization, where the hypothesis space is a random subspace of a given space. In particular, we consider possibly data dependent subspaces spanned by a random subset of the data, recovering as a special case Nystrom approaches for kernel methods. Considering random subspaces naturally leads to computational savings, but the question is whether the corresponding learning accuracy is degraded. These statistical-computational tradeoffs have been recently explored for the least squares loss and self-concordant loss functions, such as the logistic loss. Here, we work to extend these results to convex Lipschitz loss functions, that might not be smooth, such as the hinge loss used in support vector machines. This unified analysis requires developing new proofs, that use different technical tools, such as sub-gaussian inputs, to achieve fast rates. Our main results show the existence of different settings, depending on how hard the learning problem is, for which computational efficiency can be improved with no loss in performance.
translated by 谷歌翻译
This work considers a computationally and statistically efficient parameter estimation method for a wide class of latent variable models-including Gaussian mixture models, hidden Markov models, and latent Dirichlet allocation-which exploits a certain tensor structure in their low-order observable moments (typically, of second-and third-order). Specifically, parameter estimation is reduced to the problem of extracting a certain (orthogonal) decomposition of a symmetric tensor derived from the moments; this decomposition can be viewed as a natural generalization of the singular value decomposition for matrices. Although tensor decompositions are generally intractable to compute, the decomposition of these specially structured tensors can be efficiently obtained by a variety of approaches, including power iterations and maximization approaches (similar to the case of matrices). A detailed analysis of a robust tensor power method is provided, establishing an analogue of Wedin's perturbation theorem for the singular vectors of matrices. This implies a robust and computationally tractable estimation approach for several popular latent variable models.
translated by 谷歌翻译
无限尺寸空间之间的学习运营商是机器学习,成像科学,数学建模和仿真等广泛应用中出现的重要学习任务。本文研究了利用深神经网络的Lipschitz运营商的非参数估计。 Non-asymptotic upper bounds are derived for the generalization error of the empirical risk minimizer over a properly chosen network class.在假设目标操作员表现出低维结构的情况下,由于训练样本大小增加,我们的误差界限衰减,根据我们估计中的内在尺寸,具有吸引力的快速速度。我们的假设涵盖了实际应用中的大多数情况,我们的结果通过利用操作员估算中的低维结构来产生快速速率。我们还研究了网络结构(例如,网络宽度,深度和稀疏性)对神经网络估计器的泛化误差的影响,并提出了对网络结构的选择来定量地最大化学习效率的一般建议。
translated by 谷歌翻译
我们调查与高斯的混合的数据分享共同但未知,潜在虐待协方差矩阵的数据。我们首先考虑具有两个等级大小的组件的高斯混合,并根据最大似然估计导出最大切割整数程序。当样品的数量在维度下线性增长时,我们证明其解决方案实现了最佳的错误分类率,直到对数因子。但是,解决最大切割问题似乎是在计算上棘手的。为了克服这一点,我们开发了一种高效的频谱算法,该算法达到最佳速率,但需要一种二次样本量。虽然这种样本复杂性比最大切割问题更差,但我们猜测没有多项式方法可以更好地执行。此外,我们收集了支持统计计算差距存在的数值和理论证据。最后,我们将MAX-CUT程序概括为$ k $ -means程序,该程序处理多组分混合物的可能性不平等。它享有相似的最优性保证,用于满足运输成本不平等的分布式的混合物,包括高斯和强烈的对数的分布。
translated by 谷歌翻译
低级MDP已成为研究强化学习中的表示和探索的重要模型。有了已知的代表,存在几种无模型的探索策略。相反,未知表示设置的所有算法都是基于模型的,因此需要对完整动力学进行建模。在这项工作中,我们介绍了低级MDP的第一个无模型表示学习算法。关键的算法贡献是一个新的Minimax表示学习目标,我们为其提供具有不同权衡的变体,其统计和计算属性不同。我们将这一表示的学习步骤与探索策略交织在一起,以无奖励的方式覆盖状态空间。所得算法可证明样品有效,并且可以适应一般函数近似以扩展到复杂的环境。
translated by 谷歌翻译
我们研究了随机近似程序,以便基于观察来自ergodic Markov链的长度$ n $的轨迹来求近求解$ d -dimension的线性固定点方程。我们首先表现出$ t _ {\ mathrm {mix}} \ tfrac {n}} \ tfrac {n}} \ tfrac {d}} \ tfrac {d} {n} $的非渐近性界限。$ t _ {\ mathrm {mix $是混合时间。然后,我们证明了一种在适当平均迭代序列上的非渐近实例依赖性,具有匹配局部渐近最小的限制的领先术语,包括对参数$的敏锐依赖(d,t _ {\ mathrm {mix}}) $以高阶术语。我们将这些上限与非渐近Minimax的下限补充,该下限是建立平均SA估计器的实例 - 最优性。我们通过Markov噪声的政策评估导出了这些结果的推导 - 覆盖了所有$ \ lambda \中的TD($ \ lambda $)算法,以便[0,1)$ - 和线性自回归模型。我们的实例依赖性表征为HyperParameter调整的细粒度模型选择程序的设计开放了门(例如,在运行TD($ \ Lambda $)算法时选择$ \ lambda $的值)。
translated by 谷歌翻译
近年来目睹了采用灵活的机械学习模型进行乐器变量(IV)回归的兴趣,但仍然缺乏不确定性量化方法的发展。在这项工作中,我们为IV次数回归提出了一种新的Quasi-Bayesian程序,建立了最近开发的核化IV模型和IV回归的双/极小配方。我们通过在$ l_2 $和sobolev规范中建立最低限度的最佳收缩率,并讨论可信球的常见有效性来分析所提出的方法的频繁行为。我们进一步推出了一种可扩展的推理算法,可以扩展到与宽神经网络模型一起工作。实证评价表明,我们的方法对复杂的高维问题产生了丰富的不确定性估计。
translated by 谷歌翻译
本文提出了一项新的统计分析,旨在解释自然语言处理(NLP)中训练技术的最新成就。我们证明,当预训练任务的类(例如,蒙版语言模型任务中的不同单词)的类别足够多样化,从某种意义上说,最后一个线性层的最小奇异值在预训练中(表示为$ \ \ \ \ \ Tilde {\ nu} $)很大,然后预训练可以显着提高下游任务的样本效率。特别是,我们显示转移学习过量风险享受$ o \ left(\ frac {1} {\ tilde {\ nu} \ sqrt {n}} \ right)$ rate,与$ o \ left相比(\)标准监督学习中的frac {1} {\ sqrt {m}} \ right)$ rate。在这里,$ n $是预训练数据的数量,$ m $是下游任务中的数据数,通常是$ n \ gg m $。我们的证明依赖于矢量形式的rademacher复杂性链规则来拆卸复合函数类别和修改的自我符合条件。这些技术可能具有独立的兴趣。
translated by 谷歌翻译
教师 - 学生模型提供了一个框架,其中可以以封闭形式描述高维监督学习的典型情况。高斯I.I.D的假设然而,可以认为典型教师 - 学生模型的输入数据可以被认为过于限制,以捕获现实数据集的行为。在本文中,我们介绍了教师和学生可以在不同的空格上行动的模型的高斯协变态概括,以固定的,而是通用的特征映射。虽然仍处于封闭形式的仍然可解决,但这种概括能够捕获广泛的现实数据集的学习曲线,从而兑现师生框架的潜力。我们的贡献是两倍:首先,我们证明了渐近培训损失和泛化误差的严格公式。其次,我们呈现了许多情况,其中模型的学习曲线捕获了使用内​​核回归和分类学习的现实数据集之一,其中盒出开箱特征映射,例如随机投影或散射变换,或者与散射变换预先学习的 - 例如通过培训多层神经网络学到的特征。我们讨论了框架的权力和局限性。
translated by 谷歌翻译
我们研究了在存在$ \ epsilon $ - 对抗异常值的高维稀疏平均值估计的问题。先前的工作为此任务获得了该任务的样本和计算有效算法,用于辅助性Subgaussian分布。在这项工作中,我们开发了第一个有效的算法,用于强大的稀疏平均值估计,而没有对协方差的先验知识。对于$ \ Mathbb r^d $上的分布,带有“认证有限”的$ t $ tum-矩和足够轻的尾巴,我们的算法达到了$ o(\ epsilon^{1-1/t})$带有样品复杂性$的错误(\ epsilon^{1-1/t}) m =(k \ log(d))^{o(t)}/\ epsilon^{2-2/t} $。对于高斯分布的特殊情况,我们的算法达到了$ \ tilde o(\ epsilon)$的接近最佳错误,带有样品复杂性$ m = o(k^4 \ mathrm {polylog}(d)(d))/\ epsilon^^ 2 $。我们的算法遵循基于方形的总和,对算法方法的证明。我们通过统计查询和低度多项式测试的下限来补充上限,提供了证据,表明我们算法实现的样本时间 - 错误权衡在质量上是最好的。
translated by 谷歌翻译
Recent empirical works have successfully used unlabeled data to learn feature representations that are broadly useful in downstream classification tasks. Several of these methods are reminiscent of the well-known word2vec embedding algorithm: leveraging availability of pairs of semantically "similar" data points and "negative samples," the learner forces the inner product of representations of similar pairs with each other to be higher on average than with negative samples. The current paper uses the term contrastive learning for such algorithms and presents a theoretical framework for analyzing them by introducing latent classes and hypothesizing that semantically similar points are sampled from the same latent class. This framework allows us to show provable guarantees on the performance of the learned representations on the average classification task that is comprised of a subset of the same set of latent classes. Our generalization bound also shows that learned representations can reduce (labeled) sample complexity on downstream tasks. We conduct controlled experiments in both the text and image domains to support the theory.
translated by 谷歌翻译
在这项工作中,我们考虑线性逆问题$ y = ax + \ epsilon $,其中$ a \ colon x \ to y $是可分离的hilbert spaces $ x $和$ y $之间的已知线性运算符,$ x $。 $ x $和$ \ epsilon $中的随机变量是$ y $的零平均随机过程。该设置涵盖成像中的几个逆问题,包括去噪,去束和X射线层析造影。在古典正规框架内,我们专注于正则化功能的情况下未能先验,而是从数据中学习。我们的第一个结果是关于均方误差的最佳广义Tikhonov规则器的表征。我们发现它完全独立于前向操作员$ a $,并仅取决于$ x $的平均值和协方差。然后,我们考虑从两个不同框架中设置的有限训练中学习常规程序的问题:一个监督,根据$ x $和$ y $的样本,只有一个无人监督,只基于$ x $的样本。在这两种情况下,我们证明了泛化界限,在X $和$ \ epsilon $的分发的一些弱假设下,包括子高斯变量的情况。我们的界限保持在无限尺寸的空间中,从而表明更精细和更细的离散化不会使这个学习问题更加困难。结果通过数值模拟验证。
translated by 谷歌翻译
现代神经网络通常以强烈的过度构造状态运行:它们包含许多参数,即使实际标签被纯粹随机的标签代替,它们也可以插入训练集。尽管如此,他们在看不见的数据上达到了良好的预测错误:插值训练集并不会导致巨大的概括错误。此外,过度散色化似乎是有益的,因为它简化了优化景观。在这里,我们在神经切线(NT)制度中的两层神经网络的背景下研究这些现象。我们考虑了一个简单的数据模型,以及各向同性协变量的矢量,$ d $尺寸和$ n $隐藏的神经元。我们假设样本量$ n $和尺寸$ d $都很大,并且它们在多项式上相关。我们的第一个主要结果是对过份术的经验NT内核的特征结构的特征。这种表征意味着必然的表明,经验NT内核的最低特征值在$ ND \ gg n $后立即从零界限,因此网络可以在同一制度中精确插值任意标签。我们的第二个主要结果是对NT Ridge回归的概括误差的表征,包括特殊情况,最小值-ULL_2 $ NORD插值。我们证明,一旦$ nd \ gg n $,测试误差就会被内核岭回归之一相对于无限宽度内核而近似。多项式脊回归的误差依次近似后者,从而通过与激活函数的高度组件相关的“自我诱导的”项增加了正则化参数。多项式程度取决于样本量和尺寸(尤其是$ \ log n/\ log d $)。
translated by 谷歌翻译
我们考虑与高斯数据的高维线性回归中的插值学习,并在类高斯宽度方面证明了任意假设类别中的内插器的泛化误差。将通用绑定到欧几里德常规球恢复了Bartlett等人的一致性结果。(2020)对于最小规范内插器,并确认周等人的预测。(2020)在高斯数据的特殊情况下,对于近乎最小常态的内插器。我们通过将其应用于单位来证明所界限的一般性,从而获得最小L1-NORM Interpoolator(基础追踪)的新型一致性结果。我们的结果表明,基于规范的泛化界限如何解释并用于分析良性过度装备,至少在某些设置中。
translated by 谷歌翻译
鉴于$ n $ i.i.d.从未知的分发$ P $绘制的样本,何时可以生成更大的$ n + m $ samples,这些标题不能与$ n + m $ i.i.d区别区别。从$ p $绘制的样品?(AXELROD等人2019)将该问题正式化为样本放大问题,并为离散分布和高斯位置模型提供了最佳放大程序。然而,这些程序和相关的下限定制到特定分布类,对样本扩增的一般统计理解仍然很大程度上。在这项工作中,我们通过推出通常适用的放大程序,下限技术和与现有统计概念的联系来放置对公司统计基础的样本放大问题。我们的技术适用于一大类分布,包括指数家庭,并在样本放大和分配学习之间建立严格的联系。
translated by 谷歌翻译