因果代表学习揭示了低级观察背后的潜在高级因果变量,这对于一组感兴趣的下游任务具有巨大的潜力。尽管如此,从观察到的数据中确定真正的潜在因果表示是一个巨大的挑战。在这项工作中,我们专注于确定潜在的因果变量。为此,我们分析了潜在空间中的三个固有特性,包括传递性,置换和缩放。我们表明,传递性严重阻碍了潜在因果变量的可识别性,而排列和缩放指导指导了识别潜在因果变量的方向。为了打破传递性,我们假设潜在的潜在因果关系是线性高斯模型,其中高斯噪声的权重,平均值和方差受到额外观察到的变量的调节。在这些假设下,我们从理论上表明,潜在因果变量可以识别为微不足道的置换和缩放。基于这个理论结果,我们提出了一种新型方法,称为结构性因果变异自动编码器,该方法直接学习潜在因果变量,以及从潜在因果变量到观察到的映射。关于合成和实际数据的实验结果证明了可识别的结果以及所提出的学习潜在因果变量的能力。
translated by 谷歌翻译
The framework of variational autoencoders allows us to efficiently learn deep latent-variable models, such that the model's marginal distribution over observed variables fits the data. Often, we're interested in going a step further, and want to approximate the true joint distribution over observed and latent variables, including the true prior and posterior distributions over latent variables. This is known to be generally impossible due to unidentifiability of the model. We address this issue by showing that for a broad family of deep latentvariable models, identification of the true joint distribution over observed and latent variables is actually possible up to very simple transformations, thus achieving a principled and powerful form of disentanglement. Our result requires a factorized prior distribution over the latent variables that is conditioned on an additionally observed variable, such as a class label or almost any other observation. We build on recent developments in nonlinear ICA, which we extend to the case with noisy or undercomplete observations, integrated in a maximum likelihood framework. The result also trivially contains identifiable flow-based generative models as a special case.
translated by 谷歌翻译
我们的目标是恢复时间延迟的潜在因果变量,并确定其与测量的时间数据的关系。由于在最常规情况下潜在的变量并不唯一可恢复,估计来自观察的因果关系差别尤其具有挑战性。在这项工作中,我们考虑潜在过程的非参数,非间断设置和参数设置,并提出了两个可提供的条件,在该可提供条件下,可以从其非线性混合物中识别时间上发生因果潜在过程。我们提出了一系列的理论上接地的架构,通过在原因过程中通过适当的约束来实现我们的条件来扩展变形AutoEncoders(VAES)。各种数据集的实验结果表明,在不同依赖结构下,从观察到的变量可靠地识别了时间的因果关系潜在过程,并且我们的方法显着优于不利用历史记录或非间常信息的基线。这是第一种工作之一,即在不使用稀疏性或最小的假设的情况下成功地从非线性混合物中恢复时间延迟潜在的过程之一。
translated by 谷歌翻译
学习分离旨在寻找低维表示,该表示由观察数据的多个解释性和生成因素组成。变异自动编码器(VAE)的框架通常用于将独立因素从观察中解散。但是,在实际情况下,具有语义的因素不一定是独立的。取而代之的是,可能存在基本的因果结构,从而使这些因素取决于这些因素。因此,我们提出了一个名为Causalvae的新的基于VAE的框架,该框架包括一个因果层,将独立的外源性因子转化为因果内源性因素,这些因子与数据中的因果关系相关概念相对应。我们进一步分析了模型,表明从观测值中学到的拟议模型可以在一定程度上恢复真实的模型。实验是在各种数据集上进行的,包括合成和真实的基准Celeba。结果表明,因果关系学到的因果表示是可以解释的,并且其因果关系作为定向无环形图(DAG)的因果关系良好地鉴定出来。此外,我们证明了所提出的Causalvae模型能够通过因果因素的“操作”来生成反事实数据。
translated by 谷歌翻译
多源域适应(MSDA)学会了预测目标域数据中的标签,在标记来自多个源域的所有数据并且来自目标域的所有数据的设置下。为了解决这个问题,大多数方法都集中在跨域中学习不变表示。但是,他们的成功严重依赖于标签分布在跨域保持不变的假设。为了减轻它,我们提出了一个新的假设,潜在的协变量移位,其中潜在内容变量的边际分布跨域变化,并且给定标签的条件分布在跨域之间保持不变。我们引入了一个潜在样式变量,以补充潜在因果图作为数据和标签生成过程的潜在内容变量。我们表明,尽管潜在样式变量由于潜在空间中的传输性能而无法识别,但在某些温和条件下,可以将潜在内容变量识别为简单缩放。这激发了我们为MSDA提出一种新颖的方法,该方法在潜在内容变量上学习了不变标签的分布,而不是学习不变表示。与基于不变表示的许多最新方法相比,对模拟和真实数据的经验评估证明了该方法的有效性。
translated by 谷歌翻译
因果表示学习是识别基本因果变量及其从高维观察(例如图像)中的关系的任务。最近的工作表明,可以从观测的时间序列中重建因果变量,假设它们之间没有瞬时因果关系。但是,在实际应用中,我们的测量或帧速率可能比许多因果效应要慢。这有效地产生了“瞬时”效果,并使以前的可识别性结果无效。为了解决这个问题,我们提出了ICITRI,这是一种因果表示学习方法,当具有已知干预目标的完美干预措施时,可以在时间序列中处理瞬时效应。 Icitris从时间观察中识别因果因素,同时使用可区分的因果发现方法来学习其因果图。在三个视频数据集的实验中,Icitris准确地识别了因果因素及其因果图。
translated by 谷歌翻译
这项工作介绍了一种新颖的原则,我们通过机制稀疏正规调用解剖学,基于高级概念的动态往往稀疏的想法。我们提出了一种表示学习方法,可以通过同时学习与它们相关的潜在因子和稀疏因果图形模型来引起解剖学。我们开发了一个严谨的可识别性理论,建立在最近的非线性独立分量分析(ICA)结果中,结果是模拟这一原理,并展示了如何恢复潜在变量,如果一个规则大致潜在机制为稀疏,如果某些图形连接标准通过数据生成过程满足。作为我们框架的特殊情况,我们展示了如何利用未知目标的干预措施来解除潜在因子,从而借鉴ICA和因果关系之间的进一步联系。我们还提出了一种基于VAE的方法,其中通过二进制掩码来学习和正规化潜在机制,并通过表明它学会在模拟中的解散表示来验证我们的理论。
translated by 谷歌翻译
因果推断对于跨业务参与,医疗和政策制定等领域的数据驱动决策至关重要。然而,关于因果发现的研究已经与推理方法分开发展,从而阻止了两个领域方法的直接组合。在这项工作中,我们开发了深层端到端因果推理(DECI),这是一种基于流动的非线性添加噪声模型,该模型具有观察数据,并且可以执行因果发现和推理,包括有条件的平均治疗效果(CATE) )估计。我们提供了理论上的保证,即DECI可以根据标准因果发现假设恢复地面真实因果图。受应用影响的激励,我们将该模型扩展到具有缺失值的异质,混合型数据,从而允许连续和离散的治疗决策。我们的结果表明,与因果发现的相关基线相比,DECI的竞争性能和(c)在合成数据集和因果机器学习基准测试基准的一千多个实验中,跨数据类型和缺失水平进行了估计。
translated by 谷歌翻译
本文提出了在适当的监督信息下进行分解的生成因果代表(亲爱的)学习方法。与实施潜在变量独立性的现有分解方法不同,我们考虑了一种基本利益因素可以因果关系相关的一般情况。我们表明,即使在监督下,先前具有独立先验的方法也无法解散因果关系。在这一发现的激励下,我们提出了一种称为DEAR的新的解开学习方法,该方法可以使因果可控的产生和因果代表学习。这种新公式的关键要素是使用结构性因果模型(SCM)作为双向生成模型的先验分布。然后,使用合适的GAN算法与发电机和编码器共同训练了先验,并与有关地面真相因子及其基本因果结构的监督信息合并。我们提供了有关该方法的可识别性和渐近收敛性的理论理由。我们对合成和真实数据集进行了广泛的实验,以证明DEAR在因果可控生成中的有效性,以及在样本效率和分布鲁棒性方面,学到的表示表示对下游任务的好处。
translated by 谷歌翻译
Linear structural causal models (SCMs)-- in which each observed variable is generated by a subset of the other observed variables as well as a subset of the exogenous sources-- are pervasive in causal inference and casual discovery. However, for the task of causal discovery, existing work almost exclusively focus on the submodel where each observed variable is associated with a distinct source with non-zero variance. This results in the restriction that no observed variable can deterministically depend on other observed variables or latent confounders. In this paper, we extend the results on structure learning by focusing on a subclass of linear SCMs which do not have this property, i.e., models in which observed variables can be causally affected by any subset of the sources, and are allowed to be a deterministic function of other observed variables or latent confounders. This allows for a more realistic modeling of influence or information propagation in systems. We focus on the task of causal discovery form observational data generated from a member of this subclass. We derive a set of necessary and sufficient conditions for unique identifiability of the causal structure. To the best of our knowledge, this is the first work that gives identifiability results for causal discovery under both latent confounding and deterministic relationships. Further, we propose an algorithm for recovering the underlying causal structure when the aforementioned conditions are satisfied. We validate our theoretical results both on synthetic and real datasets.
translated by 谷歌翻译
从视觉观察中了解动态系统的潜在因果因素被认为是对复杂环境中推理的推理的关键步骤。在本文中,我们提出了Citris,这是一种变异自动编码器框架,从图像的时间序列中学习因果表示,其中潜在的因果因素可能已被干预。与最近的文献相反,Citris利用了时间性和观察干预目标,以鉴定标量和多维因果因素,例如3D旋转角度。此外,通过引入归一化流,可以轻松扩展柑橘,以利用和删除已验证的自动编码器获得的删除表示形式。在标量因果因素上扩展了先前的结果,我们在更一般的环境中证明了可识别性,其中仅因果因素的某些成分受干预措施影响。在对3D渲染图像序列的实验中,柑橘类似于恢复基本因果变量的先前方法。此外,使用预验证的自动编码器,Citris甚至可以概括为因果因素的实例化,从而在SIM到现实的概括中开放了未来的研究领域,以进行因果关系学习。
translated by 谷歌翻译
我们证明了(a)具有通用近似功能的广泛的深层变量模型的可识别性,并且(b)是通常在实践中使用的变异自动编码器的解码器。与现有工作不同,我们的分析不需要弱监督,辅助信息或潜在空间中的条件。最近,研究了此类模型的可识别性。在这些作品中,主要的假设是,还可以观察到辅助变量$ u $(也称为侧面信息)。同时,几项作品从经验上观察到,这在实践中似乎并不是必需的。在这项工作中,我们通过证明具有通用近似功能的广泛生成(即无监督的)模型来解释这种行为,无需侧面信息$ u $:我们证明了整个生成模型的可识别性$ u $,仅观察数据$ x $。我们考虑的模型与实践中使用的自动编码器体系结构紧密连接,该体系结构利用了潜在空间中的混合先验和编码器中的Relu/Leaky-Relu激活。我们的主要结果是可识别性层次结构,该层次结构显着概括了先前的工作,并揭示了不同的假设如何导致可识别性的“优势”不同。例如,我们最薄弱的结果确定了(无监督的)可识别性,直到仿射转换已经改善了现有工作。众所周知,这些模型具有通用近似功能,而且它们已被广泛用于实践中来学习数据表示。
translated by 谷歌翻译
In this review, we discuss approaches for learning causal structure from data, also called causal discovery. In particular, we focus on approaches for learning directed acyclic graphs (DAGs) and various generalizations which allow for some variables to be unobserved in the available data. We devote special attention to two fundamental combinatorial aspects of causal structure learning. First, we discuss the structure of the search space over causal graphs. Second, we discuss the structure of equivalence classes over causal graphs, i.e., sets of graphs which represent what can be learned from observational data alone, and how these equivalence classes can be refined by adding interventional data.
translated by 谷歌翻译
可识别表示学习的理论旨在构建通用方法,从低水平的感觉数据中提取高级潜在(因果)因素。大多数现有的作品都集中在可识别的表示学习中,并依赖于对潜在因素(因果)因素的分配假设。但是,实际上,我们通常还可以访问用于表示学习的介入数据。我们如何利用介入数据来帮助识别高级潜在的潜伏期?为此,我们探讨了在这项工作中可识别的代表学习中介入数据的作用。我们研究潜在因果因素在没有介入数据的情况下,在未介入数据的情况下,在最小的分布假设上。我们证明,如果真实的潜在变量通过多项式函数映射到观察到的高维数据,则通过最小化自动装饰器的标准重建损失来表示学习,将确定真正的潜在潜在的潜在潜在转化。如果我们进一步访问了由硬$ $ do $ $干预产生的干预数据,那么我们就可以识别出这些干预潜在的潜在潜在的潜在潜在的潜在潜在的潜在潜在的潜伏期。
translated by 谷歌翻译
我们研究了在存在潜在变量存在下从数据重建因果图形模型的问题。感兴趣的主要问题是在潜在变量上恢复因果结构,同时允许一般,可能在变量之间的非线性依赖性。在许多实际问题中,原始观测之间的依赖性(例如,图像中的像素)的依赖性比某些高级潜在特征(例如概念或对象)之间的依赖性要小得多,这是感兴趣的设置。我们提供潜在表示和潜在潜在因果模型的条件可通过减少到混合甲骨文来识别。这些结果突出了学习混合模型的顺序的良好研究问题与观察到和解开的基础结构的问题之间的富裕问题之间的有趣连接。证明是建设性的,并导致几种算法用于明确重建全图形模型。我们讨论高效算法并提供说明实践中算法的实验。
translated by 谷歌翻译
Causal disentanglement seeks a representation of data involving latent variables that relate to one another via a causal model. A representation is identifiable if both the latent model and the transformation from latent to observed variables are unique. In this paper, we study observed variables that are a linear transformation of a linear latent causal model. Data from interventions are necessary for identifiability: if one latent variable is missing an intervention, we show that there exist distinct models that cannot be distinguished. Conversely, we show that a single intervention on each latent variable is sufficient for identifiability. Our proof uses a generalization of the RQ decomposition of a matrix that replaces the usual orthogonal and upper triangular conditions with analogues depending on a partial order on the rows of the matrix, with partial order determined by a latent causal model. We corroborate our theoretical results with a method for causal disentanglement that accurately recovers a latent causal model.
translated by 谷歌翻译
大多数现代的潜在变量和概率生成模型,例如变异自动编码器(VAE),即使有无限的数据也无法解决,这些模型也无法解决。此类模型的最新应用表明需要强烈可识别的模型,其中观察结果与唯一的潜在代码相对应。在维持灵活性的同时,取得了进展,最著名的是IVAE(Arxiv:1907.04809 [stat.ml]),该模型排除了许多(但不是全部 - 不确定)。我们构建了一个完整的理论框架,用于分析潜在变量模型的不确定性,并根据生成器函数的属性和潜在变量先验分布精确表征它们。为了说明,我们应用框架以更好地了解最近的可识别性结果的结构。然后,我们研究如何指定强烈识别的潜在变量模型,并构建两个这样的模型。一种是对ivae的直接修饰。另一个想法从最佳运输和导致新颖的模型和连接到最近的工作。
translated by 谷歌翻译
作为因果推断中的重要问题,我们讨论了治疗效果(TES)的估计。代表混淆器作为潜在的变量,我们提出了完整的VAE,这是一个变形AutoEncoder(VAE)的新变种,其具有足以识别TES的预后分数的动机。我们的VAE也自然地提供了使用其之前用于治疗组的陈述。(半)合成数据集的实验显示在各种环境下的最先进的性能,包括不观察到的混淆。基于我们模型的可识别性,我们在不协调下证明TES的识别,并讨论(可能)扩展到更难的设置。
translated by 谷歌翻译
We consider the problem of recovering the causal structure underlying observations from different experimental conditions when the targets of the interventions in each experiment are unknown. We assume a linear structural causal model with additive Gaussian noise and consider interventions that perturb their targets while maintaining the causal relationships in the system. Different models may entail the same distributions, offering competing causal explanations for the given observations. We fully characterize this equivalence class and offer identifiability results, which we use to derive a greedy algorithm called GnIES to recover the equivalence class of the data-generating model without knowledge of the intervention targets. In addition, we develop a novel procedure to generate semi-synthetic data sets with known causal ground truth but distributions closely resembling those of a real data set of choice. We leverage this procedure and evaluate the performance of GnIES on synthetic, real, and semi-synthetic data sets. Despite the strong Gaussian distributional assumption, GnIES is robust to an array of model violations and competitive in recovering the causal structure in small- to large-sample settings. We provide, in the Python packages "gnies" and "sempler", implementations of GnIES and our semi-synthetic data generation procedure.
translated by 谷歌翻译
在非参数环境中,因果结构通常仅在马尔可夫等效性上可识别,并且出于因果推断的目的,学习马尔可夫等效类(MEC)的图形表示很有用。在本文中,我们重新审视了贪婪的等效搜索(GES)算法,该算法被广泛引用为一种基于分数的算法,用于学习基本因果结构的MEC。我们观察到,为了使GES算法在非参数设置中保持一致,不必设计评估图的评分度量。取而代之的是,足以插入有条件依赖度量的一致估计器来指导搜索。因此,我们提出了GES算法的重塑,该算法比基于标准分数的版本更灵活,并且很容易将自己带到非参数设置,并具有条件依赖性的一般度量。此外,我们提出了一种神经条件依赖性(NCD)度量,该措施利用深神经网络的表达能力以非参数方式表征条件独立性。我们根据标准假设建立了重新构架GES算法的最佳性,并使用我们的NCD估计器来决定条件独立性的一致性。这些结果共同证明了拟议的方法。实验结果证明了我们方法在因果发现中的有效性,以及使用我们的NCD度量而不是基于内核的措施的优势。
translated by 谷歌翻译