从视觉观察中了解动态系统的潜在因果因素被认为是对复杂环境中推理的推理的关键步骤。在本文中,我们提出了Citris,这是一种变异自动编码器框架,从图像的时间序列中学习因果表示,其中潜在的因果因素可能已被干预。与最近的文献相反,Citris利用了时间性和观察干预目标,以鉴定标量和多维因果因素,例如3D旋转角度。此外,通过引入归一化流,可以轻松扩展柑橘,以利用和删除已验证的自动编码器获得的删除表示形式。在标量因果因素上扩展了先前的结果,我们在更一般的环境中证明了可识别性,其中仅因果因素的某些成分受干预措施影响。在对3D渲染图像序列的实验中,柑橘类似于恢复基本因果变量的先前方法。此外,使用预验证的自动编码器,Citris甚至可以概括为因果因素的实例化,从而在SIM到现实的概括中开放了未来的研究领域,以进行因果关系学习。
translated by 谷歌翻译
因果表示学习是识别基本因果变量及其从高维观察(例如图像)中的关系的任务。最近的工作表明,可以从观测的时间序列中重建因果变量,假设它们之间没有瞬时因果关系。但是,在实际应用中,我们的测量或帧速率可能比许多因果效应要慢。这有效地产生了“瞬时”效果,并使以前的可识别性结果无效。为了解决这个问题,我们提出了ICITRI,这是一种因果表示学习方法,当具有已知干预目标的完美干预措施时,可以在时间序列中处理瞬时效应。 Icitris从时间观察中识别因果因素,同时使用可区分的因果发现方法来学习其因果图。在三个视频数据集的实验中,Icitris准确地识别了因果因素及其因果图。
translated by 谷歌翻译
本文提出了在适当的监督信息下进行分解的生成因果代表(亲爱的)学习方法。与实施潜在变量独立性的现有分解方法不同,我们考虑了一种基本利益因素可以因果关系相关的一般情况。我们表明,即使在监督下,先前具有独立先验的方法也无法解散因果关系。在这一发现的激励下,我们提出了一种称为DEAR的新的解开学习方法,该方法可以使因果可控的产生和因果代表学习。这种新公式的关键要素是使用结构性因果模型(SCM)作为双向生成模型的先验分布。然后,使用合适的GAN算法与发电机和编码器共同训练了先验,并与有关地面真相因子及其基本因果结构的监督信息合并。我们提供了有关该方法的可识别性和渐近收敛性的理论理由。我们对合成和真实数据集进行了广泛的实验,以证明DEAR在因果可控生成中的有效性,以及在样本效率和分布鲁棒性方面,学到的表示表示对下游任务的好处。
translated by 谷歌翻译
我们的目标是恢复时间延迟的潜在因果变量,并确定其与测量的时间数据的关系。由于在最常规情况下潜在的变量并不唯一可恢复,估计来自观察的因果关系差别尤其具有挑战性。在这项工作中,我们考虑潜在过程的非参数,非间断设置和参数设置,并提出了两个可提供的条件,在该可提供条件下,可以从其非线性混合物中识别时间上发生因果潜在过程。我们提出了一系列的理论上接地的架构,通过在原因过程中通过适当的约束来实现我们的条件来扩展变形AutoEncoders(VAES)。各种数据集的实验结果表明,在不同依赖结构下,从观察到的变量可靠地识别了时间的因果关系潜在过程,并且我们的方法显着优于不利用历史记录或非间常信息的基线。这是第一种工作之一,即在不使用稀疏性或最小的假设的情况下成功地从非线性混合物中恢复时间延迟潜在的过程之一。
translated by 谷歌翻译
这项工作介绍了一种新颖的原则,我们通过机制稀疏正规调用解剖学,基于高级概念的动态往往稀疏的想法。我们提出了一种表示学习方法,可以通过同时学习与它们相关的潜在因子和稀疏因果图形模型来引起解剖学。我们开发了一个严谨的可识别性理论,建立在最近的非线性独立分量分析(ICA)结果中,结果是模拟这一原理,并展示了如何恢复潜在变量,如果一个规则大致潜在机制为稀疏,如果某些图形连接标准通过数据生成过程满足。作为我们框架的特殊情况,我们展示了如何利用未知目标的干预措施来解除潜在因子,从而借鉴ICA和因果关系之间的进一步联系。我们还提出了一种基于VAE的方法,其中通过二进制掩码来学习和正规化潜在机制,并通过表明它学会在模拟中的解散表示来验证我们的理论。
translated by 谷歌翻译
The framework of variational autoencoders allows us to efficiently learn deep latent-variable models, such that the model's marginal distribution over observed variables fits the data. Often, we're interested in going a step further, and want to approximate the true joint distribution over observed and latent variables, including the true prior and posterior distributions over latent variables. This is known to be generally impossible due to unidentifiability of the model. We address this issue by showing that for a broad family of deep latentvariable models, identification of the true joint distribution over observed and latent variables is actually possible up to very simple transformations, thus achieving a principled and powerful form of disentanglement. Our result requires a factorized prior distribution over the latent variables that is conditioned on an additionally observed variable, such as a class label or almost any other observation. We build on recent developments in nonlinear ICA, which we extend to the case with noisy or undercomplete observations, integrated in a maximum likelihood framework. The result also trivially contains identifiable flow-based generative models as a special case.
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
学习分离旨在寻找低维表示,该表示由观察数据的多个解释性和生成因素组成。变异自动编码器(VAE)的框架通常用于将独立因素从观察中解散。但是,在实际情况下,具有语义的因素不一定是独立的。取而代之的是,可能存在基本的因果结构,从而使这些因素取决于这些因素。因此,我们提出了一个名为Causalvae的新的基于VAE的框架,该框架包括一个因果层,将独立的外源性因子转化为因果内源性因素,这些因子与数据中的因果关系相关概念相对应。我们进一步分析了模型,表明从观测值中学到的拟议模型可以在一定程度上恢复真实的模型。实验是在各种数据集上进行的,包括合成和真实的基准Celeba。结果表明,因果关系学到的因果表示是可以解释的,并且其因果关系作为定向无环形图(DAG)的因果关系良好地鉴定出来。此外,我们证明了所提出的Causalvae模型能够通过因果因素的“操作”来生成反事实数据。
translated by 谷歌翻译
因果推断对于跨业务参与,医疗和政策制定等领域的数据驱动决策至关重要。然而,关于因果发现的研究已经与推理方法分开发展,从而阻止了两个领域方法的直接组合。在这项工作中,我们开发了深层端到端因果推理(DECI),这是一种基于流动的非线性添加噪声模型,该模型具有观察数据,并且可以执行因果发现和推理,包括有条件的平均治疗效果(CATE) )估计。我们提供了理论上的保证,即DECI可以根据标准因果发现假设恢复地面真实因果图。受应用影响的激励,我们将该模型扩展到具有缺失值的异质,混合型数据,从而允许连续和离散的治疗决策。我们的结果表明,与因果发现的相关基线相比,DECI的竞争性能和(c)在合成数据集和因果机器学习基准测试基准的一千多个实验中,跨数据类型和缺失水平进行了估计。
translated by 谷歌翻译
因果代表学习揭示了低级观察背后的潜在高级因果变量,这对于一组感兴趣的下游任务具有巨大的潜力。尽管如此,从观察到的数据中确定真正的潜在因果表示是一个巨大的挑战。在这项工作中,我们专注于确定潜在的因果变量。为此,我们分析了潜在空间中的三个固有特性,包括传递性,置换和缩放。我们表明,传递性严重阻碍了潜在因果变量的可识别性,而排列和缩放指导指导了识别潜在因果变量的方向。为了打破传递性,我们假设潜在的潜在因果关系是线性高斯模型,其中高斯噪声的权重,平均值和方差受到额外观察到的变量的调节。在这些假设下,我们从理论上表明,潜在因果变量可以识别为微不足道的置换和缩放。基于这个理论结果,我们提出了一种新型方法,称为结构性因果变异自动编码器,该方法直接学习潜在因果变量,以及从潜在因果变量到观察到的映射。关于合成和实际数据的实验结果证明了可识别的结果以及所提出的学习潜在因果变量的能力。
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
代表学习者认为,解开变异的因素已经证明是在解决各种现实世界的关切方面是重要的,如公平和可意识。最初由具有独立假设的无监督模型组成,最近,监督和相关特征较弱,但没有生成过程的因果关系。相比之下,我们在原因生成过程的制度下工作,因为生成因子是独立的,或者可能被一组观察或未观察到的混乱困惑。我们通过解散因果过程的概念对解开表示的分析。我们激励对新指标和数据集进行研究,以研究因果解剖和提出两个评估指标和数据集。我们展示了我们的指标捕获了解开了因果过程的探索。最后,我们利用我们的指标和数据集对艺术艺术状态的实证研究进行了脱扣代表学习者,以从因果角度来评估它们。
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
许多增强学习(RL)环境包括独立实体,这些实体稀疏地互动。在这种环境中,RL代理商在任何特定情况下对其他实体的影响仅受限。我们在这项工作中的想法是,通过了解代理人可以通过其行动的何时以及何时何地效力,可以有效地指导。为实现这一目标,我们根据条件互信息介绍\ emph {情况依赖性因果影响},并表明它可以可靠地检测影响的态度。然后,我们提出了几种方法将这种措施集成到RL算法中,以改善探索和禁止政策学习。所有修改的算法都显示出机器人操纵任务的数据效率强劲增加。
translated by 谷歌翻译
Latent variable models such as the Variational Auto-Encoder (VAE) have become a go-to tool for analyzing biological data, especially in the field of single-cell genomics. One remaining challenge is the interpretability of latent variables as biological processes that define a cell's identity. Outside of biological applications, this problem is commonly referred to as learning disentangled representations. Although several disentanglement-promoting variants of the VAE were introduced, and applied to single-cell genomics data, this task has been shown to be infeasible from independent and identically distributed measurements, without additional structure. Instead, recent methods propose to leverage non-stationary data, as well as the sparse mechanism shift assumption in order to learn disentangled representations with a causal semantic. Here, we extend the application of these methodological advances to the analysis of single-cell genomics data with genetic or chemical perturbations. More precisely, we propose a deep generative model of single-cell gene expression data for which each perturbation is treated as a stochastic intervention targeting an unknown, but sparse, subset of latent variables. We benchmark these methods on simulated single-cell data to evaluate their performance at latent units recovery, causal target identification and out-of-domain generalization. Finally, we apply those approaches to two real-world large-scale gene perturbation data sets and find that models that exploit the sparse mechanism shift hypothesis surpass contemporary methods on a transfer learning task. We implement our new model and benchmarks using the scvi-tools library, and release it as open-source software at \url{https://github.com/Genentech/sVAE}.
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
The key idea behind the unsupervised learning of disentangled representations is that real-world data is generated by a few explanatory factors of variation which can be recovered by unsupervised learning algorithms. In this paper, we provide a sober look at recent progress in the field and challenge some common assumptions. We first theoretically show that the unsupervised learning of disentangled representations is fundamentally impossible without inductive biases on both the models and the data. Then, we train more than 12 000 models covering most prominent methods and evaluation metrics in a reproducible large-scale experimental study on seven different data sets. We observe that while the different methods successfully enforce properties "encouraged" by the corresponding losses, well-disentangled models seemingly cannot be identified without supervision. Furthermore, increased disentanglement does not seem to lead to a decreased sample complexity of learning for downstream tasks. Our results suggest that future work on disentanglement learning should be explicit about the role of inductive biases and (implicit) supervision, investigate concrete benefits of enforcing disentanglement of the learned representations, and consider a reproducible experimental setup covering several data sets.
translated by 谷歌翻译
象征性的AI社区越来越多地试图在神经符号结构中接受机器学习,但由于文化障碍,仍在挣扎。为了打破障碍,这份相当有思想的个人备忘录试图解释和纠正统计,机器学习和深入学习的惯例,从局外人的角度进行深入学习。它提供了一个分步协议,用于设计一个机器学习系统,该系统满足符号AI社区认真对待所必需的最低理论保证,即,它讨论“在哪些条件下,我们可以停止担心和接受统计机器学习。 “一些亮点:大多数教科书都是为计划专门研究STAT/ML/DL的人编写的,应该接受术语。该备忘录适用于经验丰富的象征研究人员,他们听到了很多嗡嗡声,但仍然不确定和持怀疑态度。有关STAT/ML/DL的信息目前太分散或嘈杂而无法投资。此备忘录优先考虑紧凑性,并特别注意与象征性范式相互共鸣的概念。我希望这份备忘录能节省时间。它优先考虑一般数学建模,并且不讨论任何特定的函数近似器,例如神经网络(NNS),SVMS,决策树等。它可以对校正开放。将此备忘录视为与博客文章相似的内容,采用有关Arxiv的论文的形式。
translated by 谷歌翻译
跨学科的一个重要问题是发现产生预期结果的干预措施。当可能的干预空间很大时,需要进行详尽的搜索,需要实验设计策略。在这种情况下,编码变量之间的因果关系以及因此对系统的影响,对于有效地确定理想的干预措施至关重要。我们开发了一种迭代因果方法来识别最佳干预措施,这是通过分布后平均值和所需目标平均值之间的差异来衡量的。我们制定了一种主动学习策略,该策略使用从不同干预措施中获得的样本来更新有关基本因果模型的信念,并确定对最佳干预措施最有用的样本,因此应在下一批中获得。该方法采用了因果模型的贝叶斯更新,并使用精心设计的,有因果关系的收购功能优先考虑干预措施。此采集函数以封闭形式进行评估,从而有效优化。理论上以信息理论界限和可证明的一致性结果在理论上基于理论上的算法。我们说明了综合数据和现实世界生物学数据的方法,即来自worturb-cite-seq实验的基因表达数据,以识别诱导特定细胞态过渡的最佳扰动;与几个基线相比,观察到所提出的因果方法可实现更好的样品效率。在这两种情况下,我们都认为因果知情的采集函数尤其优于现有标准,从而允许使用实验明显更少的最佳干预设计。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译