对抗训练方法是针对对抗性例子的最先进(SOTA)经验防御方法。事实证明,许多正则化方法与对抗训练的组合有效。然而,这种正则化方法是在时域中实现的。由于对抗性脆弱性可以被视为一种高频现象,因此必须调节频域中的对抗训练的神经网络模型。面对这些挑战,我们对小波的正则化属性进行了理论分析,可以增强对抗性训练。我们提出了一种基于HAAR小波分解的小波正则化方法,该方法称为小波平均池。该小波正则化模块集成到宽的残留神经网络中,因此形成了新的WideWavelEtResnet模型。在CIFAR-10和CIFAR-100的数据集上,我们提出的对抗小波训练方法在不同类型的攻击下实现了相当大的鲁棒性。它验证了以下假设:我们的小波正则化方法可以增强对抗性的鲁棒性,尤其是在深宽的神经网络中。实施了频率原理(F原理)和解释性的可视化实验,以显示我们方法的有效性。提出了基于不同小波碱函数的详细比较。该代码可在存储库中获得:\ url {https://github.com/momo1986/AdversarialWavelTraining}。
translated by 谷歌翻译
已知深度神经网络(DNN)容易受到用不可察觉的扰动制作的对抗性示例的影响,即,输入图像的微小变化会引起错误的分类,从而威胁着基于深度学习的部署系统的可靠性。经常采用对抗训练(AT)来通过训练损坏和干净的数据的混合物来提高DNN的鲁棒性。但是,大多数基于AT的方法在处理\ textit {转移的对抗示例}方面是无效的,这些方法是生成以欺骗各种防御模型的生成的,因此无法满足现实情况下提出的概括要求。此外,对抗性训练一般的国防模型不能对具有扰动的输入产生可解释的预测,而不同的领域专家则需要一个高度可解释的强大模型才能了解DNN的行为。在这项工作中,我们提出了一种基于Jacobian规范和选择性输入梯度正则化(J-SIGR)的方法,该方法通过Jacobian归一化提出了线性化的鲁棒性,还将基于扰动的显着性图正规化,以模仿模型的可解释预测。因此,我们既可以提高DNN的防御能力和高解释性。最后,我们评估了跨不同体系结构的方法,以针对强大的对抗性攻击。实验表明,提出的J-Sigr赋予了针对转移的对抗攻击的鲁棒性,我们还表明,来自神经网络的预测易于解释。
translated by 谷歌翻译
在过去的几年中,卷积神经网络(CNN)一直是广泛的计算机视觉任务中的主导神经架构。从图像和信号处理的角度来看,这一成功可能会令人惊讶,因为大多数CNN的固有空间金字塔设计显然违反了基本的信号处理法,即在其下采样操作中对定理进行采样。但是,由于不良的采样似乎不影响模型的准确性,因此在模型鲁棒性开始受到更多关注之前,该问题已被广泛忽略。最近的工作[17]在对抗性攻击和分布变化的背景下,毕竟表明,CNN的脆弱性与不良下降采样操作引起的混叠伪像之间存在很强的相关性。本文以这些发现为基础,并引入了一个可混合的免费下采样操作,可以轻松地插入任何CNN体系结构:频lowcut池。我们的实验表明,结合简单而快速的FGSM对抗训练,我们的超参数无操作员显着提高了模型的鲁棒性,并避免了灾难性的过度拟合。
translated by 谷歌翻译
已知深神经网络(DNN)容易受到对抗性攻击的影响。已经提出了一系列防御方法来培训普遍稳健的DNN,其中对抗性培训已经证明了有希望的结果。然而,尽管对对抗性培训开发的初步理解,但从架构角度来看,它仍然不明确,从架构角度来看,什么配置可以导致更强大的DNN。在本文中,我们通过全面调查网络宽度和深度对前对方培训的DNN的鲁棒性的全面调查来解决这一差距。具体地,我们进行以下关键观察:1)更多参数(更高的模型容量)不一定有助于对抗冒险; 2)网络的最后阶段(最后一组块)降低能力实际上可以改善对抗性的鲁棒性; 3)在相同的参数预算下,存在对抗性鲁棒性的最佳架构配置。我们还提供了一个理论分析,解释了为什么这种网络配置可以帮助鲁棒性。这些架构见解可以帮助设计对抗的强制性DNN。代码可用于\ url {https://github.com/hanxunh/robustwrn}。
translated by 谷歌翻译
通过对数据集的样本应用小而有意的最差情况扰动可以产生对抗性输入,这导致甚至最先进的深神经网络,以高信任输出不正确的答案。因此,开发了一些对抗防御技术来提高模型的安全性和稳健性,并避免它们被攻击。逐渐,攻击者和捍卫者之间的游戏类似的竞争,其中两个玩家都会试图在最大化自己的收益的同时互相反对发挥最佳策略。为了解决游戏,每个玩家都基于对对手的战略选择的预测来选择反对对手的最佳策略。在这项工作中,我们正处于防守方面,以申请防止攻击的游戏理论方法。我们使用两个随机化方法,随机初始化和随机激活修剪,以创造网络的多样性。此外,我们使用一种去噪技术,超级分辨率,通过在攻击前预处理图像来改善模型的鲁棒性。我们的实验结果表明,这三种方法可以有效提高深度学习神经网络的鲁棒性。
translated by 谷歌翻译
对抗训练(AT)在防御对抗例子方面表现出色。最近的研究表明,示例对于AT期间模型的最终鲁棒性并不同样重要,即,所谓的硬示例可以攻击容易表现出比对最终鲁棒性的鲁棒示例更大的影响。因此,保证硬示例的鲁棒性对于改善模型的最终鲁棒性至关重要。但是,定义有效的启发式方法来寻找辛苦示例仍然很困难。在本文中,受到信息瓶颈(IB)原则的启发,我们发现了一个具有高度共同信息及其相关的潜在表示的例子,更有可能受到攻击。基于此观察,我们提出了一种新颖有效的对抗训练方法(Infoat)。鼓励Infoat找到具有高相互信息的示例,并有效利用它们以提高模型的最终鲁棒性。实验结果表明,与几种最先进的方法相比,Infoat在不同数据集和模型之间达到了最佳的鲁棒性。
translated by 谷歌翻译
The authors thank Nicholas Carlini (UC Berkeley) and Dimitris Tsipras (MIT) for feedback to improve the survey quality. We also acknowledge X. Huang (Uni. Liverpool), K. R. Reddy (IISC), E. Valle (UNICAMP), Y. Yoo (CLAIR) and others for providing pointers to make the survey more comprehensive.
translated by 谷歌翻译
改善深度神经网络(DNN)对抗对抗示例的鲁棒性是安全深度学习的重要而挑战性问题。跨越现有的防御技术,具有预计梯度体面(PGD)的对抗培训是最有效的。对手训练通过最大化分类丢失,通过最大限度地减少从内在最大化生成的逆势示例的丢失来解决\ excepitient {内部最大化}生成侵略性示例的初始最大优化问题。 。因此,衡量内部最大化的衡量标准是如何对对抗性培训至关重要的。在本文中,我们提出了这种标准,即限制优化(FOSC)的一阶静止条件,以定量评估内部最大化中发现的对抗性实例的收敛质量。通过FOSC,我们发现,为了确保更好的稳健性,必须在培训的\ Texit {稍后的阶段}中具有更好的收敛质量的对抗性示例。然而,在早期阶段,高收敛质量的对抗例子不是必需的,甚至可能导致稳健性差。基于这些观察,我们提出了一种\ Texit {动态}培训策略,逐步提高产生的对抗性实例的收敛质量,这显着提高了对抗性培训的鲁棒性。我们的理论和经验结果表明了该方法的有效性。
translated by 谷歌翻译
在本文中,我们提出了一种防御策略,以通过合并隐藏的层表示来改善对抗性鲁棒性。这种防御策略的关键旨在压缩或过滤输入信息,包括对抗扰动。而且这种防御策略可以被视为一种激活函数,可以应用于任何类型的神经网络。从理论上讲,我们在某些条件下也证明了这种防御策略的有效性。此外,合并隐藏层表示,我们提出了三种类型的对抗攻击,分别生成三种类型的对抗示例。实验表明,我们的防御方法可以显着改善深神经网络的对抗性鲁棒性,即使我们不采用对抗性训练,也可以实现最新的表现。
translated by 谷歌翻译
对抗性的鲁棒性已经成为深度学习的核心目标,无论是在理论和实践中。然而,成功的方法来改善对抗的鲁棒性(如逆势训练)在不受干扰的数据上大大伤害了泛化性能。这可能会对对抗性鲁棒性如何影响现实世界系统的影响(即,如果它可以提高未受干扰的数据的准确性),许多人可能选择放弃鲁棒性)。我们提出内插对抗培训,该培训最近雇用了在对抗培训框架内基于插值的基于插值的培训方法。在CiFar -10上,对抗性训练增加了标准测试错误(当没有对手时)从4.43%到12.32%,而我们的内插对抗培训我们保留了对抗性的鲁棒性,同时实现了仅6.45%的标准测试误差。通过我们的技术,强大模型标准误差的相对增加从178.1%降至仅为45.5%。此外,我们提供内插对抗性培训的数学分析,以确认其效率,并在鲁棒性和泛化方面展示其优势。
translated by 谷歌翻译
作为一种概率建模技术,基于流的模型在无损压缩\ cite {idf,idf ++,lbb,ivpf,iflow}的领域表现出了巨大的潜力。与其他深层生成模型(例如自动回应,VAE)\ cite {bitswap,hilloc,pixelcnn ++,pixelsnail},这些模型明确地模拟了数据分布概率,因此基于流的模型的性能更好,因为它们的出色概率密度估计和满意度的概率和满意度的概率。在基于流量的模型中,多尺度体系结构提供了从浅层到输出层的快捷方式,从而大大降低了计算复杂性并避免添加更多层时性能降解。这对于构建基于先进的基于流动的可学习射击映射至关重要。此外,实用压缩任务中模型设计的轻量级要求表明,具有多尺度体系结构的流量在编码复杂性和压缩效率之间取得了最佳的权衡。
translated by 谷歌翻译
深度学习(DL)在许多与人类相关的任务中表现出巨大的成功,这导致其在许多计算机视觉的基础应用中采用,例如安全监控系统,自治车辆和医疗保健。一旦他们拥有能力克服安全关键挑战,这种安全关键型应用程序必须绘制他们的成功部署之路。在这些挑战中,防止或/和检测对抗性实例(AES)。对手可以仔细制作小型,通常是难以察觉的,称为扰动的噪声被添加到清洁图像中以产生AE。 AE的目的是愚弄DL模型,使其成为DL应用的潜在风险。在文献中提出了许多测试时间逃避攻击和对策,即防御或检测方法。此外,还发布了很少的评论和调查,理论上展示了威胁的分类和对策方法,几乎​​没有焦点检测方法。在本文中,我们专注于图像分类任务,并试图为神经网络分类器进行测试时间逃避攻击检测方法的调查。对此类方法的详细讨论提供了在四个数据集的不同场景下的八个最先进的探测器的实验结果。我们还为这一研究方向提供了潜在的挑战和未来的观点。
translated by 谷歌翻译
深度神经网络(DNN)容易受到对抗性示例的影响,其中DNN由于含有不可察觉的扰动而被误导为虚假输出。对抗性训练是一种可靠有效的防御方法,可能会大大减少神经网络的脆弱性,并成为强大学习的事实上的标准。尽管许多最近的作品实践了以数据为中心的理念,例如如何生成更好的对抗性示例或使用生成模型来产生额外的培训数据,但我们回顾了模型本身,并从深度特征分布的角度重新审视对抗性的鲁棒性有见地的互补性。在本文中,我们建议分支正交性对抗训练(BORT)获得最先进的性能,仅使用原始数据集用于对抗训练。为了练习我们整合多个正交解决方案空间的设计思想,我们利用一个简单明了的多分支神经网络,可消除对抗性攻击而不会增加推理时间。我们启发提出相应的损耗函数,分支 - 正交丢失,以使多支出模型正交的每个溶液空间。我们分别在CIFAR-10,CIFAR-100和SVHN上评估了我们的方法,分别针对\ ell _ {\ infty}的规范触发尺寸\ epsilon = 8/255。进行了详尽的实验,以表明我们的方法超出了所有最新方法,而无需任何技巧。与所有不使用其他数据进行培训的方法相比,我们的模型在CIFAR-10和CIFAR-100上实现了67.3%和41.5%的鲁棒精度(在最先进的ART上提高了 +7.23%和 +9.07% )。我们还使用比我们的训练组胜过比我们的方法的表现要大得多。我们所有的模型和代码均可在https://github.com/huangd1999/bort上在线获得。
translated by 谷歌翻译
深度神经网络很容易被称为对抗攻击的小扰动都愚弄。对抗性培训(AT)是一种近似解决了稳健的优化问题,以最大限度地减少最坏情况损失,并且被广泛认为是对这种攻击的最有效的防御。由于产生了强大的对抗性示例的高计算时间,已经提出了单步方法来减少培训时间。然而,这些方法遭受灾难性的过度装备,在训练期间侵犯准确度下降。虽然提出了改进,但它们增加了培训时间和稳健性远非多步骤。我们为FW优化(FW-AT)开发了对抗的对抗培训的理论框架,揭示了损失景观与$ \ ell_2 $失真之间的几何连接。我们分析地表明FW攻击的高变形相当于沿攻击路径的小梯度变化。然后在各种深度神经网络架构上进行实验证明,$ \ ell \ infty $攻击对抗强大的模型实现近乎最大的$ \ ell_2 $失真,而标准网络具有较低的失真。此外,实验表明,灾难性的过度拟合与FW攻击的低变形强烈相关。为了展示我们理论框架的效用,我们开发FW-AT-Adap,这是一种新的逆势训练算法,它使用简单的失真度量来调整攻击步骤的数量,以提高效率而不会影响鲁棒性。 FW-AT-Adapt提供培训时间以单步快速分配方法,并改善了在白色盒子和黑匣子设置中的普发内精度的最小损失和多步PGD之间的差距。
translated by 谷歌翻译
The study on improving the robustness of deep neural networks against adversarial examples grows rapidly in recent years. Among them, adversarial training is the most promising one, which flattens the input loss landscape (loss change with respect to input) via training on adversarially perturbed examples. However, how the widely used weight loss landscape (loss change with respect to weight) performs in adversarial training is rarely explored. In this paper, we investigate the weight loss landscape from a new perspective, and identify a clear correlation between the flatness of weight loss landscape and robust generalization gap. Several well-recognized adversarial training improvements, such as early stopping, designing new objective functions, or leveraging unlabeled data, all implicitly flatten the weight loss landscape. Based on these observations, we propose a simple yet effective Adversarial Weight Perturbation (AWP) to explicitly regularize the flatness of weight loss landscape, forming a double-perturbation mechanism in the adversarial training framework that adversarially perturbs both inputs and weights. Extensive experiments demonstrate that AWP indeed brings flatter weight loss landscape and can be easily incorporated into various existing adversarial training methods to further boost their adversarial robustness.
translated by 谷歌翻译
Designing powerful adversarial attacks is of paramount importance for the evaluation of $\ell_p$-bounded adversarial defenses. Projected Gradient Descent (PGD) is one of the most effective and conceptually simple algorithms to generate such adversaries. The search space of PGD is dictated by the steepest ascent directions of an objective. Despite the plethora of objective function choices, there is no universally superior option and robustness overestimation may arise from ill-suited objective selection. Driven by this observation, we postulate that the combination of different objectives through a simple loss alternating scheme renders PGD more robust towards design choices. We experimentally verify this assertion on a synthetic-data example and by evaluating our proposed method across 25 different $\ell_{\infty}$-robust models and 3 datasets. The performance improvement is consistent, when compared to the single loss counterparts. In the CIFAR-10 dataset, our strongest adversarial attack outperforms all of the white-box components of AutoAttack (AA) ensemble, as well as the most powerful attacks existing on the literature, achieving state-of-the-art results in the computational budget of our study ($T=100$, no restarts).
translated by 谷歌翻译
虽然深度神经网络(DNN)在许多真实的任务中实现了出色的性能,但它们非常容易受到对抗的攻击。对抗这种攻击的主要防御是对抗的,一种技术,通过将对抗噪声引入其输入来训练DNN培训以训练为对抗性攻击的技术。此程序是有效的,但必须在培训阶段进行。在这项工作中,我们提出了增强随机森林(ARF),这是一个简单易用的策略,用于在不修改其权重的情况下强化现有的预磨损DNN。对于每个图像,我们通过应用不同颜色,模糊,噪声和几何变换来生成随机测试时间增强。然后我们使用DNN的Logits输出来训练一个简单的随机林来预测真正的类标签。我们的方法在自然图像的分类上最小的妥协,实现了最先进的对抗鲁棒性对白和黑匣子攻击的多样性。我们也针对许多适应性的白盒攻击测试ARF,并在与对抗训练结合时显示出优异的结果。代码可在https://github.com/giladcohen/arf获得。
translated by 谷歌翻译
积极调查深度神经网络的对抗鲁棒性。然而,大多数现有的防御方法限于特定类型的对抗扰动。具体而言,它们通常不能同时为多次攻击类型提供抵抗力,即,它们缺乏多扰动鲁棒性。此外,与图像识别问题相比,视频识别模型的对抗鲁棒性相对未开发。虽然有几项研究提出了如何产生对抗性视频,但在文献中只发表了关于防御策略的少数关于防御策略的方法。在本文中,我们提出了用于视频识别的多种抗逆视频的第一战略之一。所提出的方法称为Multibn,使用具有基于学习的BN选择模块的多个独立批量归一化(BN)层对多个对冲视频类型进行对抗性训练。利用多个BN结构,每个BN Brach负责学习单个扰动类型的分布,从而提供更精确的分布估计。这种机制有利于处理多种扰动类型。 BN选择模块检测输入视频的攻击类型,并将其发送到相应的BN分支,使MultiBN全自动并允许端接训练。与目前的对抗训练方法相比,所提出的Multibn对不同甚至不可预见的对抗性视频类型具有更强的多扰动稳健性,从LP界攻击和物理上可实现的攻击范围。在不同的数据集和目标模型上保持真实。此外,我们进行了广泛的分析,以研究多BN结构的性质。
translated by 谷歌翻译
基于深度神经网络(DNN)的智能信息(IOT)系统已被广泛部署在现实世界中。然而,发现DNNS易受对抗性示例的影响,这提高了人们对智能物联网系统的可靠性和安全性的担忧。测试和评估IOT系统的稳健性成为必要和必要。最近已经提出了各种攻击和策略,但效率问题仍未纠正。现有方法是计算地广泛或耗时,这在实践中不适用。在本文中,我们提出了一种称为攻击启发GaN(AI-GaN)的新框架,在有条件地产生对抗性实例。曾经接受过培训,可以有效地给予对抗扰动的输入图像和目标类。我们在白盒设置的不同数据集中应用AI-GaN,黑匣子设置和由最先进的防御保护的目标模型。通过广泛的实验,AI-GaN实现了高攻击成功率,优于现有方法,并显着降低了生成时间。此外,首次,AI-GaN成功地缩放到复杂的数据集。 Cifar-100和Imagenet,所有课程中的成功率约为90美元。
translated by 谷歌翻译
Aliasing is a highly important concept in signal processing, as careful consideration of resolution changes is essential in ensuring transmission and processing quality of audio, image, and video. Despite this, up until recently aliasing has received very little consideration in Deep Learning, with all common architectures carelessly sub-sampling without considering aliasing effects. In this work, we investigate the hypothesis that the existence of adversarial perturbations is due in part to aliasing in neural networks. Our ultimate goal is to increase robustness against adversarial attacks using explainable, non-trained, structural changes only, derived from aliasing first principles. Our contributions are the following. First, we establish a sufficient condition for no aliasing for general image transformations. Next, we study sources of aliasing in common neural network layers, and derive simple modifications from first principles to eliminate or reduce it. Lastly, our experimental results show a solid link between anti-aliasing and adversarial attacks. Simply reducing aliasing already results in more robust classifiers, and combining anti-aliasing with robust training out-performs solo robust training on $L_2$ attacks with none or minimal losses in performance on $L_{\infty}$ attacks.
translated by 谷歌翻译