作为一种概率建模技术,基于流的模型在无损压缩\ cite {idf,idf ++,lbb,ivpf,iflow}的领域表现出了巨大的潜力。与其他深层生成模型(例如自动回应,VAE)\ cite {bitswap,hilloc,pixelcnn ++,pixelsnail},这些模型明确地模拟了数据分布概率,因此基于流的模型的性能更好,因为它们的出色概率密度估计和满意度的概率和满意度的概率。在基于流量的模型中,多尺度体系结构提供了从浅层到输出层的快捷方式,从而大大降低了计算复杂性并避免添加更多层时性能降解。这对于构建基于先进的基于流动的可学习射击映射至关重要。此外,实用压缩任务中模型设计的轻量级要求表明,具有多尺度体系结构的流量在编码复杂性和压缩效率之间取得了最佳的权衡。
translated by 谷歌翻译
改善深度神经网络(DNN)对抗对抗示例的鲁棒性是安全深度学习的重要而挑战性问题。跨越现有的防御技术,具有预计梯度体面(PGD)的对抗培训是最有效的。对手训练通过最大化分类丢失,通过最大限度地减少从内在最大化生成的逆势示例的丢失来解决\ excepitient {内部最大化}生成侵略性示例的初始最大优化问题。 。因此,衡量内部最大化的衡量标准是如何对对抗性培训至关重要的。在本文中,我们提出了这种标准,即限制优化(FOSC)的一阶静止条件,以定量评估内部最大化中发现的对抗性实例的收敛质量。通过FOSC,我们发现,为了确保更好的稳健性,必须在培训的\ Texit {稍后的阶段}中具有更好的收敛质量的对抗性示例。然而,在早期阶段,高收敛质量的对抗例子不是必需的,甚至可能导致稳健性差。基于这些观察,我们提出了一种\ Texit {动态}培训策略,逐步提高产生的对抗性实例的收敛质量,这显着提高了对抗性培训的鲁棒性。我们的理论和经验结果表明了该方法的有效性。
translated by 谷歌翻译
对抗性的鲁棒性已经成为深度学习的核心目标,无论是在理论和实践中。然而,成功的方法来改善对抗的鲁棒性(如逆势训练)在不受干扰的数据上大大伤害了泛化性能。这可能会对对抗性鲁棒性如何影响现实世界系统的影响(即,如果它可以提高未受干扰的数据的准确性),许多人可能选择放弃鲁棒性)。我们提出内插对抗培训,该培训最近雇用了在对抗培训框架内基于插值的基于插值的培训方法。在CiFar -10上,对抗性训练增加了标准测试错误(当没有对手时)从4.43%到12.32%,而我们的内插对抗培训我们保留了对抗性的鲁棒性,同时实现了仅6.45%的标准测试误差。通过我们的技术,强大模型标准误差的相对增加从178.1%降至仅为45.5%。此外,我们提供内插对抗性培训的数学分析,以确认其效率,并在鲁棒性和泛化方面展示其优势。
translated by 谷歌翻译
深度神经网络(DNN)容易受到对抗性示例的影响,其中DNN由于含有不可察觉的扰动而被误导为虚假输出。对抗性训练是一种可靠有效的防御方法,可能会大大减少神经网络的脆弱性,并成为强大学习的事实上的标准。尽管许多最近的作品实践了以数据为中心的理念,例如如何生成更好的对抗性示例或使用生成模型来产生额外的培训数据,但我们回顾了模型本身,并从深度特征分布的角度重新审视对抗性的鲁棒性有见地的互补性。在本文中,我们建议分支正交性对抗训练(BORT)获得最先进的性能,仅使用原始数据集用于对抗训练。为了练习我们整合多个正交解决方案空间的设计思想,我们利用一个简单明了的多分支神经网络,可消除对抗性攻击而不会增加推理时间。我们启发提出相应的损耗函数,分支 - 正交丢失,以使多支出模型正交的每个溶液空间。我们分别在CIFAR-10,CIFAR-100和SVHN上评估了我们的方法,分别针对\ ell _ {\ infty}的规范触发尺寸\ epsilon = 8/255。进行了详尽的实验,以表明我们的方法超出了所有最新方法,而无需任何技巧。与所有不使用其他数据进行培训的方法相比,我们的模型在CIFAR-10和CIFAR-100上实现了67.3%和41.5%的鲁棒精度(在最先进的ART上提高了 +7.23%和 +9.07% )。我们还使用比我们的训练组胜过比我们的方法的表现要大得多。我们所有的模型和代码均可在https://github.com/huangd1999/bort上在线获得。
translated by 谷歌翻译
已知深神经网络(DNN)容易受到对抗性攻击的影响。已经提出了一系列防御方法来培训普遍稳健的DNN,其中对抗性培训已经证明了有希望的结果。然而,尽管对对抗性培训开发的初步理解,但从架构角度来看,它仍然不明确,从架构角度来看,什么配置可以导致更强大的DNN。在本文中,我们通过全面调查网络宽度和深度对前对方培训的DNN的鲁棒性的全面调查来解决这一差距。具体地,我们进行以下关键观察:1)更多参数(更高的模型容量)不一定有助于对抗冒险; 2)网络的最后阶段(最后一组块)降低能力实际上可以改善对抗性的鲁棒性; 3)在相同的参数预算下,存在对抗性鲁棒性的最佳架构配置。我们还提供了一个理论分析,解释了为什么这种网络配置可以帮助鲁棒性。这些架构见解可以帮助设计对抗的强制性DNN。代码可用于\ url {https://github.com/hanxunh/robustwrn}。
translated by 谷歌翻译
已知深度神经网络(DNN)容易受到用不可察觉的扰动制作的对抗性示例的影响,即,输入图像的微小变化会引起错误的分类,从而威胁着基于深度学习的部署系统的可靠性。经常采用对抗训练(AT)来通过训练损坏和干净的数据的混合物来提高DNN的鲁棒性。但是,大多数基于AT的方法在处理\ textit {转移的对抗示例}方面是无效的,这些方法是生成以欺骗各种防御模型的生成的,因此无法满足现实情况下提出的概括要求。此外,对抗性训练一般的国防模型不能对具有扰动的输入产生可解释的预测,而不同的领域专家则需要一个高度可解释的强大模型才能了解DNN的行为。在这项工作中,我们提出了一种基于Jacobian规范和选择性输入梯度正则化(J-SIGR)的方法,该方法通过Jacobian归一化提出了线性化的鲁棒性,还将基于扰动的显着性图正规化,以模仿模型的可解释预测。因此,我们既可以提高DNN的防御能力和高解释性。最后,我们评估了跨不同体系结构的方法,以针对强大的对抗性攻击。实验表明,提出的J-Sigr赋予了针对转移的对抗攻击的鲁棒性,我们还表明,来自神经网络的预测易于解释。
translated by 谷歌翻译
有必要提高某些特殊班级的表现,或者特别保护它们免受对抗学习的攻击。本文提出了一个将成本敏感分类和对抗性学习结合在一起的框架,以训练可以区分受保护和未受保护的类的模型,以使受保护的类别不太容易受到对抗性示例的影响。在此框架中,我们发现在训练深神经网络(称为Min-Max属性)期间,一个有趣的现象,即卷积层中大多数参数的绝对值。基于这种最小的最大属性,该属性是在随机分布的角度制定和分析的,我们进一步建立了一个针对对抗性示例的新防御模型,以改善对抗性鲁棒性。构建模型的一个优点是,它的性能比标准模型更好,并且可以与对抗性训练相结合,以提高性能。在实验上证实,对于所有类别的平均准确性,我们的模型在没有发生攻击时几乎与现有模型一样,并且在发生攻击时比现有模型更好。具体而言,关于受保护类的准确性,提议的模型比发生攻击时的现有模型要好得多。
translated by 谷歌翻译
对抗训练方法是针对对抗性例子的最先进(SOTA)经验防御方法。事实证明,许多正则化方法与对抗训练的组合有效。然而,这种正则化方法是在时域中实现的。由于对抗性脆弱性可以被视为一种高频现象,因此必须调节频域中的对抗训练的神经网络模型。面对这些挑战,我们对小波的正则化属性进行了理论分析,可以增强对抗性训练。我们提出了一种基于HAAR小波分解的小波正则化方法,该方法称为小波平均池。该小波正则化模块集成到宽的残留神经网络中,因此形成了新的WideWavelEtResnet模型。在CIFAR-10和CIFAR-100的数据集上,我们提出的对抗小波训练方法在不同类型的攻击下实现了相当大的鲁棒性。它验证了以下假设:我们的小波正则化方法可以增强对抗性的鲁棒性,尤其是在深宽的神经网络中。实施了频率原理(F原理)和解释性的可视化实验,以显示我们方法的有效性。提出了基于不同小波碱函数的详细比较。该代码可在存储库中获得:\ url {https://github.com/momo1986/AdversarialWavelTraining}。
translated by 谷歌翻译
We identify a trade-off between robustness and accuracy that serves as a guiding principle in the design of defenses against adversarial examples. Although this problem has been widely studied empirically, much remains unknown concerning the theory underlying this trade-off. In this work, we decompose the prediction error for adversarial examples (robust error) as the sum of the natural (classification) error and boundary error, and provide a differentiable upper bound using the theory of classification-calibrated loss, which is shown to be the tightest possible upper bound uniform over all probability distributions and measurable predictors. Inspired by our theoretical analysis, we also design a new defense method, TRADES, to trade adversarial robustness off against accuracy. Our proposed algorithm performs well experimentally in real-world datasets. The methodology is the foundation of our entry to the NeurIPS 2018 Adversarial Vision Challenge in which we won the 1st place out of ~2,000 submissions, surpassing the runner-up approach by 11.41% in terms of mean 2 perturbation distance.
translated by 谷歌翻译
对抗训练(AT)在防御对抗例子方面表现出色。最近的研究表明,示例对于AT期间模型的最终鲁棒性并不同样重要,即,所谓的硬示例可以攻击容易表现出比对最终鲁棒性的鲁棒示例更大的影响。因此,保证硬示例的鲁棒性对于改善模型的最终鲁棒性至关重要。但是,定义有效的启发式方法来寻找辛苦示例仍然很困难。在本文中,受到信息瓶颈(IB)原则的启发,我们发现了一个具有高度共同信息及其相关的潜在表示的例子,更有可能受到攻击。基于此观察,我们提出了一种新颖有效的对抗训练方法(Infoat)。鼓励Infoat找到具有高相互信息的示例,并有效利用它们以提高模型的最终鲁棒性。实验结果表明,与几种最先进的方法相比,Infoat在不同数据集和模型之间达到了最佳的鲁棒性。
translated by 谷歌翻译
对抗性培训(AT)被认为是对抗对抗攻击最可靠的防御之一。然而,模型培训以牺牲标准精度,并不概括为新的攻击。最近的作用表明,在新型威胁模型中的新威胁模型或神经感知威胁模型中,对普遍威胁模型的对抗样本进行了泛化改进。然而,前者需要确切的流形信息,而后者需要算法放松。通过这些考虑因素,我们利用了具有规范化流的底层歧管信息,确保了确切的歧管的假设保持。此外,我们提出了一种名为联合空间威胁模型(JSTM)的新型威胁模型,其可以作为神经感知威胁模型的特殊情况,这些威胁模型不需要额外放松来制作相应的对抗性攻击。在JSTM下,我们培养了新的对抗性攻击和防御。混合策略提高了神经网络的标准准确性,但与AT结合时牺牲了鲁棒性。为了解决这个问题,我们提出了强大的混合策略,其中我们最大限度地提高了内插图像的逆境,并获得了鲁棒性和预装配。我们的实验表明,内插关节空间对抗性训练(IJSAT)在CiFar-10/100,Om-ImageNet和CiFar-10-C数据集中实现了标准精度,鲁棒性和泛化的良好性能。 IJSAT也是灵活的,可以用作数据增强方法,以提高标准精度,并与诸多换取以提高鲁棒性的方法相结合。
translated by 谷歌翻译
可逆的神经网络(Inns)已被用于设计生成模型,实现节省内存梯度计算,并解决逆问题。在这项工作中,我们展示了普通二手纪念架构遭受爆炸逆,因此易于变得数值不可逆转。在广泛的Inn用例中,我们揭示了包括在分配和分配的变化(OOD)数据的变化公式的不适用性的失败,用于节省内存返回的不正确渐变,以及无法从标准化流量模型中采样。我们进一步推出了普通架构原子构建块的双嘴唇特性。这些见解对旅馆的稳定性然后提供了前进的方法来解决这些故障。对于本地可释放足够的任务,如记忆保存的倒退,我们提出了一种灵活且高效的常规器。对于必要的全球可逆性的问题,例如在ood数据上应用标准化流动,我们展示了设计稳定的旅馆构建块的重要性。
translated by 谷歌翻译
对抗性的例子揭示了神经网络的脆弱性和不明原因的性质。研究对抗性实例的辩护具有相当大的实际重要性。大多数逆势的例子,错误分类网络通常无法被人类不可检测。在本文中,我们提出了一种防御模型,将分类器培训成具有形状偏好的人类感知分类模型。包括纹理传输网络(TTN)和辅助防御生成的对冲网络(GAN)的所提出的模型被称为人类感知辅助防御GaN(had-GaN)。 TTN用于扩展清洁图像的纹理样本,并有助于分类器聚焦在其形状上。 GaN用于为模型形成培训框架并生成必要的图像。在MNIST,时尚 - MNIST和CIFAR10上进行的一系列实验表明,所提出的模型优于网络鲁棒性的最先进的防御方法。该模型还证明了对抗性实例的防御能力的显着改善。
translated by 谷歌翻译
最近的研究表明,深度神经网络(DNNS)极易受到精心设计的对抗例子的影响。对那些对抗性例子的对抗性学习已被证明是防御这种攻击的最有效方法之一。目前,大多数现有的对抗示例生成方法基于一阶梯度,这几乎无法进一步改善模型的鲁棒性,尤其是在面对二阶对抗攻击时。与一阶梯度相比,二阶梯度提供了相对于自然示例的损失格局的更准确近似。受此启发的启发,我们的工作制作了二阶的对抗示例,并使用它们来训练DNNS。然而,二阶优化涉及Hessian Inverse的耗时计算。我们通过将问题转换为Krylov子空间中的优化,提出了一种近似方法,该方法显着降低了计算复杂性以加快训练过程。在矿工和CIFAR-10数据集上进行的广泛实验表明,我们使用二阶对抗示例的对抗性学习优于其他FISRT-阶方法,这可以改善针对广泛攻击的模型稳健性。
translated by 谷歌翻译
尽管机器学习系统的效率和可扩展性,但最近的研究表明,许多分类方法,尤其是深神经网络(DNN),易受对抗的例子;即,仔细制作欺骗训练有素的分类模型的例子,同时无法区分从自然数据到人类。这使得在安全关键区域中应用DNN或相关方法可能不安全。由于这个问题是由Biggio等人确定的。 (2013)和Szegedy等人。(2014年),在这一领域已经完成了很多工作,包括开发攻击方法,以产生对抗的例子和防御技术的构建防范这些例子。本文旨在向统计界介绍这一主题及其最新发展,主要关注对抗性示例的产生和保护。在数值实验中使用的计算代码(在Python和R)公开可用于读者探讨调查的方法。本文希望提交人们将鼓励更多统计学人员在这种重要的令人兴奋的领域的产生和捍卫对抗的例子。
translated by 谷歌翻译
在本文中,我们提出了一种防御策略,以通过合并隐藏的层表示来改善对抗性鲁棒性。这种防御策略的关键旨在压缩或过滤输入信息,包括对抗扰动。而且这种防御策略可以被视为一种激活函数,可以应用于任何类型的神经网络。从理论上讲,我们在某些条件下也证明了这种防御策略的有效性。此外,合并隐藏层表示,我们提出了三种类型的对抗攻击,分别生成三种类型的对抗示例。实验表明,我们的防御方法可以显着改善深神经网络的对抗性鲁棒性,即使我们不采用对抗性训练,也可以实现最新的表现。
translated by 谷歌翻译
神经网络容易受到对抗性攻击的攻击:在其输入中添加精心设计,不可察觉的扰动可以改变其输出。对抗训练是针对此类攻击的训练强大模型的最有效方法之一。不幸的是,这种方法比神经网络的香草培训要慢得多,因为它需要在每次迭代时为整个培训数据构建对抗性示例。通过利用核心选择理论,我们展示了如何选择一小部分训练数据提供了一种原则性的方法来降低健壮训练的时间复杂性。为此,我们首先为对抗核心选择提供收敛保证。特别是,我们表明收敛界限直接与我们的核心在整个训练数据中计算出的梯度的距离如何。在我们的理论分析的激励下,我们建议使用此梯度近似误差作为对抗核心选择目标,以有效地减少训练集大小。建造后,我们在培训数据的这一子集上进行对抗训练。与现有方法不同,我们的方法可以适应各种培训目标,包括交易,$ \ ell_p $ -pgd和感知性对手培训。我们进行了广泛的实验,以证明我们的进近可以使对抗性训练加快2-3次,同时在清洁和稳健的精度中略有降解。
translated by 谷歌翻译
时间序列数据在许多现实世界中(例如,移动健康)和深神经网络(DNNS)中产生,在解决它们方面已取得了巨大的成功。尽管他们成功了,但对他们对对抗性攻击的稳健性知之甚少。在本文中,我们提出了一个通过统计特征(TSA-STAT)}称为时间序列攻击的新型对抗框架}。为了解决时间序列域的独特挑战,TSA-STAT对时间序列数据的统计特征采取限制来构建对抗性示例。优化的多项式转换用于创建比基于加性扰动的攻击(就成功欺骗DNN而言)更有效的攻击。我们还提供有关构建对抗性示例的统计功能规范的认证界限。我们对各种现实世界基准数据集的实验表明,TSA-STAT在欺骗DNN的时间序列域和改善其稳健性方面的有效性。 TSA-STAT算法的源代码可在https://github.com/tahabelkhouja/time-series-series-attacks-via-statity-features上获得
translated by 谷歌翻译
深度神经网络已成为现代图像识别系统的驱动力。然而,神经网络对抗对抗性攻击的脆弱性对受这些系统影响的人构成严重威胁。在本文中,我们专注于一个真实的威胁模型,中间对手恶意拦截和erturbs网页用户上传在线。这种类型的攻击可以在简单的性能下降之上提高严重的道德问题。为了防止这种攻击,我们设计了一种新的双层优化算法,该算法在对抗对抗扰动的自然图像附近找到点。CiFar-10和Imagenet的实验表明我们的方法可以有效地强制在给定的修改预算范围内的自然图像。我们还显示所提出的方法可以在共同使用随机平滑时提高鲁棒性。
translated by 谷歌翻译
众所周知,深神经网络(DNN)在许多领域中表现出显着的成功。但是,在模型输入上添加不可察觉的速度扰动时,模型性能可能会迅速减少。为了解决这个问题,最近提出了一种随机性技术,名为随机神经网络(SNNS)。具体而言,SNNS将随机性注入模型以防御看不见的攻击并改善对抗鲁棒性。然而,对SNN的存在研究主要关注注射固定或学习噪声以模拟重量/激活。在本文中,我们发现存在的SNNS表演在很大程度上是由特征表示能力的瓶颈。令人惊讶的是,只需最大化特征分布的每个维度的方差导致我们以先前的所有方法提供相当大的升压,我们命名为最大化特征分布方案随机神经网络(MFDV-SNN)。关于众所周知的白色和黑匣子攻击的广泛实验表明,MFDV-SNN对现有方法实现了重大改进,这表明它是提高模型稳健性的简单但有效的方法。
translated by 谷歌翻译