Factorization machines (FMs) are a powerful tool for regression and classification in the context of sparse observations, that has been successfully applied to collaborative filtering, especially when side information over users or items is available. Bayesian formulations of FMs have been proposed to provide confidence intervals over the predictions made by the model, however they usually involve Markov-chain Monte Carlo methods that require many samples to provide accurate predictions, resulting in slow training in the context of large-scale data. In this paper, we propose a variational formulation of factorization machines that allows us to derive a simple objective that can be easily optimized using standard mini-batch stochastic gradient descent, making it amenable to large-scale data. Our algorithm learns an approximate posterior distribution over the user and item parameters, which leads to confidence intervals over the predictions. We show, using several datasets, that it has comparable or better performance than existing methods in terms of prediction accuracy, and provide some applications in active learning strategies, e.g., preference elicitation techniques.
translated by 谷歌翻译
矩阵分解(MF)已广泛应用于建议系统中的协作过滤。它的贝叶斯变体可以得出用户和项目嵌入的后验分布,并且对稀疏评分更强大。但是,贝叶斯方法受到其后验参数的更新规则的限制,这是由于先验和可能性的结合。变量自动编码器(VAE)可以通过捕获后验参数和数据之间的复杂映射来解决此问题。但是,当前对合作过滤的VAE的研究仅根据明确的数据信息考虑映射,而隐含嵌入信息则被忽略了。在本文中,我们首先从两个观点(以用户为导向和面向项目的观点)得出了贝叶斯MF模型的贝叶斯MF模型的较低界限(ELBO)。根据肘部,我们提出了一个基于VAE的贝叶斯MF框架。它不仅利用数据,还利用嵌入信息来近似用户项目联合分布。正如肘部所建议的那样,近似是迭代的,用户和项目嵌入彼此的编码器的交叉反馈。更具体地说,在上一个迭代中采样的用户嵌入被馈送到项目端编码器中,以估计当前迭代处的项目嵌入的后验参数,反之亦然。该估计还可以关注交叉食品的嵌入式,以进一步利用有用的信息。然后,解码器通过当前重新采样的用户和项目嵌入方式通过矩阵分解重建数据。
translated by 谷歌翻译
This paper presents a machine learning approach to multidimensional item response theory (MIRT), a class of latent factor models that can be used to model and predict student performance from observed assessment data. Inspired by collaborative filtering, we define a general class of models that includes many MIRT models. We discuss the use of penalized joint maximum likelihood (JML) to estimate individual models and cross-validation to select the best performing model. This model evaluation process can be optimized using batching techniques, such that even sparse large-scale data can be analyzed efficiently. We illustrate our approach with simulated and real data, including an example from a massive open online course (MOOC). The high-dimensional model fit to this large and sparse dataset does not lend itself well to traditional methods of factor interpretation. By analogy to recommender-system applications, we propose an alternative "validation" of the factor model, using auxiliary information about the popularity of items consulted during an open-book exam in the course.
translated by 谷歌翻译
项目反应理论(IRT)是一个无处不在的模型,可以根据他们对问题的回答理解人类行为和态度。大型现代数据集为捕捉人类行为的更多细微差别提供了机会,从而有可能改善心理测量模型,从而改善科学理解和公共政策。但是,尽管较大的数据集允许采用更灵活的方法,但许多用于拟合IRT模型的当代算法也可能具有禁止现实世界应用的巨大计算需求。为了解决这种瓶颈,我们引入了IRT的变异贝叶斯推理算法,并表明它在不牺牲准确性的情况下快速可扩展。将此方法应用于认知科学和教育的五个大规模项目响应数据集中,比替代推理算法更高的对数可能性和更高的准确性。然后,使用这种新的推论方法,我们将IRT概括为具有表现力的贝叶斯响应模型,利用深度学习的最新进展来捕获具有神经网络的非线性项目特征曲线(ICC)。使用TIMSS的特定级数学测试,我们显示我们的非线性IRT模型可以捕获有趣的不对称ICC。该算法实现是开源的,易于使用。
translated by 谷歌翻译
大多数现有推荐系统仅基于评级数据,并且他们忽略了可能会增加建议质量的其他信息来源,例如文本评论或用户和项目特征。此外,这些系统的大多数仅适用于小型数据集(数千个观察)并且无法处理大型数据集(具有数百万观察结果)。我们提出了一种推荐人算法,该算法将评级建模技术(即潜在因子模型)与基于文本评论(即潜在Dirichlet分配)的主题建模方法组合,并且我们扩展了算法,使其允许添加额外的用户和项目 - 对系统的特定信息。我们使用具有不同大小的Amazon.com数据集来评估算法的性能,对应于23个产品类别。将建筑模型与四种其他型号进行比较后,我们发现将患有评级的文本评语相结合,导致更好的建议。此外,我们发现为模型添加额外的用户和项目功能会提高其预测精度,这对于中型和大数据集尤其如此。
translated by 谷歌翻译
Many existing approaches to collaborative filtering can neither handle very large datasets nor easily deal with users who have very few ratings. In this paper we present the Probabilistic Matrix Factorization (PMF) model which scales linearly with the number of observations and, more importantly, performs well on the large, sparse, and very imbalanced Netflix dataset. We further extend the PMF model to include an adaptive prior on the model parameters and show how the model capacity can be controlled automatically. Finally, we introduce a constrained version of the PMF model that is based on the assumption that users who have rated similar sets of movies are likely to have similar preferences. The resulting model is able to generalize considerably better for users with very few ratings. When the predictions of multiple PMF models are linearly combined with the predictions of Restricted Boltzmann Machines models, we achieve an error rate of 0.8861, that is nearly 7% better than the score of Netflix's own system.
translated by 谷歌翻译
Item recommendation is the task of predicting a personalized ranking on a set of items (e.g. websites, movies, products). In this paper, we investigate the most common scenario with implicit feedback (e.g. clicks, purchases). There are many methods for item recommendation from implicit feedback like matrix factorization (MF) or adaptive knearest-neighbor (kNN). Even though these methods are designed for the item prediction task of personalized ranking, none of them is directly optimized for ranking. In this paper we present a generic optimization criterion BPR-Opt for personalized ranking that is the maximum posterior estimator derived from a Bayesian analysis of the problem. We also provide a generic learning algorithm for optimizing models with respect to BPR-Opt. The learning method is based on stochastic gradient descent with bootstrap sampling. We show how to apply our method to two state-of-the-art recommender models: matrix factorization and adaptive kNN. Our experiments indicate that for the task of personalized ranking our optimization method outperforms the standard learning techniques for MF and kNN. The results show the importance of optimizing models for the right criterion.
translated by 谷歌翻译
Such systems are particularly useful for entertainment products such as movies, music, and TV shows. Many customers will view the same movie, and each customer is likely to view numerous different movies. Customers have proven willing to indicate their level of satisfaction with particular movies, so a huge volume of data is available about which movies appeal to which customers. Companies can analyze this data to recommend movies to particular customers. RecommendeR system stRategiesBroadly speaking, recommender systems are based on one of two strategies. The content filtering approach creates a profile for each user or product to characterize its nature. For example, a movie profile could include attributes regarding its genre, the participating actors, its box office popularity, and so forth. User profiles might include demographic information or answers provided on a suitable questionnaire. The profiles allow programs to associate users with matching products. Of course, content-based strategies require gathering external information that might not be available or easy to collect.A known successful realization of content filtering is the Music Genome Project, which is used for the Internet radio service Pandora.com. A trained music analyst scores M odern consumers are inundated with choices. Electronic retailers and content providers offer a huge selection of products, with unprecedented opportunities to meet a variety of special needs and tastes. Matching consumers with the most appropriate products is key to enhancing user satisfaction and loyalty. Therefore, more retailers have become interested in recommender systems, which analyze patterns of user interest in products to provide personalized recommendations that suit a user's taste. Because good personalized recommendations can add another dimension to the user experience, e-commerce leaders like Amazon.com and Netflix have made recommender systems a salient part of their websites.
translated by 谷歌翻译
推荐系统是机器学习系统的子类,它们采用复杂的信息过滤策略来减少搜索时间,并向任何特定用户建议最相关的项目。混合建议系统以不同的方式结合了多种建议策略,以从其互补的优势中受益。一些混合推荐系统已经结合了协作过滤和基于内容的方法来构建更强大的系统。在本文中,我们提出了一个混合推荐系统,该系统将基于最小二乘(ALS)的交替正方(ALS)的协作过滤与深度学习结合在一起,以增强建议性能,并克服与协作过滤方法相关的限制,尤其是关于其冷启动问题。本质上,我们使用ALS(协作过滤)的输出来影响深度神经网络(DNN)的建议,该建议结合了大数据处理框架中的特征,上下文,结构和顺序信息。我们已经进行了几项实验,以测试拟议混合体架构向潜在客户推荐智能手机的功效,并将其性能与其他开源推荐人进行比较。结果表明,所提出的系统的表现优于几个现有的混合推荐系统。
translated by 谷歌翻译
In recent years, deep neural networks have yielded immense success on speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks on recommender systems has received relatively less scrutiny. In this work, we strive to develop techniques based on neural networks to tackle the key problem in recommendation -collaborative filtering -on the basis of implicit feedback.Although some recent work has employed deep learning for recommendation, they primarily used it to model auxiliary information, such as textual descriptions of items and acoustic features of musics. When it comes to model the key factor in collaborative filtering -the interaction between user and item features, they still resorted to matrix factorization and applied an inner product on the latent features of users and items.By replacing the inner product with a neural architecture that can learn an arbitrary function from data, we present a general framework named NCF, short for Neural networkbased Collaborative Filtering. NCF is generic and can express and generalize matrix factorization under its framework. To supercharge NCF modelling with non-linearities, we propose to leverage a multi-layer perceptron to learn the user-item interaction function. Extensive experiments on two real-world datasets show significant improvements of our proposed NCF framework over the state-of-the-art methods. Empirical evidence shows that using deeper layers of neural networks offers better recommendation performance.
translated by 谷歌翻译
Large multilayer neural networks trained with backpropagation have recently achieved state-ofthe-art results in a wide range of problems. However, using backprop for neural net learning still has some disadvantages, e.g., having to tune a large number of hyperparameters to the data, lack of calibrated probabilistic predictions, and a tendency to overfit the training data. In principle, the Bayesian approach to learning neural networks does not have these problems. However, existing Bayesian techniques lack scalability to large dataset and network sizes. In this work we present a novel scalable method for learning Bayesian neural networks, called probabilistic backpropagation (PBP). Similar to classical backpropagation, PBP works by computing a forward propagation of probabilities through the network and then doing a backward computation of gradients. A series of experiments on ten real-world datasets show that PBP is significantly faster than other techniques, while offering competitive predictive abilities. Our experiments also show that PBP provides accurate estimates of the posterior variance on the network weights.
translated by 谷歌翻译
We develop an optimization algorithm suitable for Bayesian learning in complex models. Our approach relies on natural gradient updates within a general black-box framework for efficient training with limited model-specific derivations. It applies within the class of exponential-family variational posterior distributions, for which we extensively discuss the Gaussian case for which the updates have a rather simple form. Our Quasi Black-box Variational Inference (QBVI) framework is readily applicable to a wide class of Bayesian inference problems and is of simple implementation as the updates of the variational posterior do not involve gradients with respect to the model parameters, nor the prescription of the Fisher information matrix. We develop QBVI under different hypotheses for the posterior covariance matrix, discuss details about its robust and feasible implementation, and provide a number of real-world applications to demonstrate its effectiveness.
translated by 谷歌翻译
In this paper, we study item advertisements for small businesses. This application recommends prospective customers to specific items requested by businesses. From analysis, we found that the existing Recommender Systems (RS) were ineffective for small/new businesses with a few sales history. Training samples in RS can be highly biased toward popular businesses with sufficient sales and can decrease advertising performance for small businesses. We propose a meta-learning-based RS to improve advertising performance for small/new businesses and shops: Meta-Shop. Meta-Shop leverages an advanced meta-learning optimization framework and builds a model for a shop-level recommendation. It also integrates and transfers knowledge between large and small shops, consequently learning better features in small shops. We conducted experiments on a real-world E-commerce dataset and a public benchmark dataset. Meta-Shop outperformed a production baseline and the state-of-the-art RS models. Specifically, it achieved up to 16.6% relative improvement of Recall@1M and 40.4% relative improvement of nDCG@3 for user recommendations to new shops compared to the other RS models.
translated by 谷歌翻译
多臂匪徒(MAB)提供了一种原则性的在线学习方法,以达到探索和剥削之间的平衡。由于表现出色和反馈学习低,没有学习在多种情况下采取行动,因此多臂匪徒在诸如推荐系统等应用程序中引起了广泛的关注。同样,在推荐系统中,协作过滤(CF)可以说是推荐系统中最早,最具影响力的方法。至关重要的是,新用户和不断变化的推荐项目池是推荐系统需要解决的挑战。对于协作过滤,经典方法是训练模型离线,然后执行在线测试,但是这种方法无法再处理用户偏好的动态变化,即所谓的冷启动。那么,如何在没有有效信息的情况下有效地向用户推荐项目?为了解决上述问题,已经提出了一个基于多臂强盗的协作过滤推荐系统,名为BanditMF。 BANDITMF旨在解决多军强盗算法和协作过滤中的两个挑战:(1)如何在有效信息稀缺的条件下解决冷启动问题以进行协作过滤,(2)强大社会关系域中的强盗算法问题是由独立估计与每个用户相关的未知参数并忽略用户之间的相关性引起的。
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
传统的推荐系统旨在根据观察到的群体的评级估算用户对物品的评级。与所有观察性研究一样,隐藏的混乱,这是影响物品曝光和用户评级的因素,导致估计系统偏差。因此,推荐制度研究的新趋势是否定混杂者对因果视角的影响。观察到建议中的混淆通常是在物品中共享的,因此是多原因混淆,我们将推荐模拟为多原因多结果(MCMO)推理问题。具体而言,为了解决混淆偏见,我们估计渲染项目曝光独立伯努利试验的用户特定的潜变量。生成分布由具有分解逻辑似然性的DNN参数化,并且通过变分推理估计难治性后续。控制这些因素作为替代混淆,在温和的假设下,可以消除多因素混淆所产生的偏差。此外,我们表明MCMO建模可能导致由于与高维因果空间相关的稀缺观察而导致高方差。幸运的是,我们理论上证明了作为预处理变量的推出用户特征可以大大提高样本效率并减轻过度装箱。模拟和现实世界数据集的实证研究表明,建议的深度因果额外推荐者比艺术最先进的因果推荐人员对未观察到的混乱更具稳健性。代码和数据集在https://github.com/yaochenzhu/deep-deconf发布。
translated by 谷歌翻译
本文根据推荐系统社区中当前的关注来研究用户属性:多样性,覆盖范围,校准和数据最小化。在利用侧面信息的传统上下文感知的推荐系统的实验中,我们表明用户属性并不总是改善建议。然后,我们证明用户属性可能会对多样性和覆盖率产生负面影响。最后,我们调查了从培训数据中``生存''到推荐人产生的建议列表中的有关用户的信息量。该信息是一个薄弱的信号,将来可能会被利用进行校准或作为隐私泄漏进一步研究。
translated by 谷歌翻译
In this paper, we introduce Factorization Machines (FM) which are a new model class that combines the advantages of Support Vector Machines (SVM) with factorization models. Like SVMs, FMs are a general predictor working with any real valued feature vector. In contrast to SVMs, FMs model all interactions between variables using factorized parameters. Thus they are able to estimate interactions even in problems with huge sparsity (like recommender systems) where SVMs fail. We show that the model equation of FMs can be calculated in linear time and thus FMs can be optimized directly. So unlike nonlinear SVMs, a transformation in the dual form is not necessary and the model parameters can be estimated directly without the need of any support vector in the solution. We show the relationship to SVMs and the advantages of FMs for parameter estimation in sparse settings.On the other hand there are many different factorization models like matrix factorization, parallel factor analysis or specialized models like SVD++, PITF or FPMC. The drawback of these models is that they are not applicable for general prediction tasks but work only with special input data. Furthermore their model equations and optimization algorithms are derived individually for each task. We show that FMs can mimic these models just by specifying the input data (i.e. the feature vectors). This makes FMs easily applicable even for users without expert knowledge in factorization models.
translated by 谷歌翻译
最近,通过双段正则化的镜头,基于基于低矩阵完成的无监督学习的兴趣复兴,这显着改善了多学科机器学习任务的性能,例如推荐系统,基因型插图和图像插入。虽然双颗粒正则化贡献了成功的主要部分,但通常涉及计算昂贵的超参数调谐。为了避免这样的缺点并提高完成性能,我们提出了一种新颖的贝叶斯学习算法,该算法会自动学习与双重正规化相关的超参数,同时保证矩阵完成的低级别。值得注意的是,设计出一个小说的先验是为了促进矩阵的低级别并同时编码双电图信息,这比单圈对应物更具挑战性。然后探索所提出的先验和可能性函数之间的非平凡条件偶联性,以使有效算法在变化推理框架下得出。使用合成和现实世界数据集的广泛实验证明了针对各种数据分析任务的拟议学习算法的最先进性能。
translated by 谷歌翻译
顺序推荐是推荐系统的广泛流行的主题。现有的作品有助于提高基于各种方法的顺序推荐系统的预测能力,例如经常性网络和自我关注机制。然而,他们未能发现和区分项目之间的各种关系,这可能是激励用户行为的潜在因素。在本文中,我们提出了一个边缘增强的全面解散图神经网络(EGD-GNN)模型,以捕获全局项目表示和本地用户意图学习项目之间的关系信息。在全球级别,我们通过所有序列构建全局链接图来模拟项目关系。然后,频道感知的解缠绕学习层被设计成将边缘信息分解为不同的信道,这可以聚合以将目标项从其邻居表示。在本地层面,我们应用一个变化的自动编码器框架来学习用户在当前序列上的意图。我们在三个现实世界数据集中评估我们提出的方法。实验结果表明,我们的模型可以通过最先进的基线获得至关重要的改进,能够区分项目特征。
translated by 谷歌翻译