项目反应理论(IRT)是一个无处不在的模型,可以根据他们对问题的回答理解人类行为和态度。大型现代数据集为捕捉人类行为的更多细微差别提供了机会,从而有可能改善心理测量模型,从而改善科学理解和公共政策。但是,尽管较大的数据集允许采用更灵活的方法,但许多用于拟合IRT模型的当代算法也可能具有禁止现实世界应用的巨大计算需求。为了解决这种瓶颈,我们引入了IRT的变异贝叶斯推理算法,并表明它在不牺牲准确性的情况下快速可扩展。将此方法应用于认知科学和教育的五个大规模项目响应数据集中,比替代推理算法更高的对数可能性和更高的准确性。然后,使用这种新的推论方法,我们将IRT概括为具有表现力的贝叶斯响应模型,利用深度学习的最新进展来捕获具有神经网络的非线性项目特征曲线(ICC)。使用TIMSS的特定级数学测试,我们显示我们的非线性IRT模型可以捕获有趣的不对称ICC。该算法实现是开源的,易于使用。
translated by 谷歌翻译
统计模型是机器学习的核心,具有广泛适用性,跨各种下游任务。模型通常由通过最大似然估计从数据估计的自由参数控制。但是,当面对现实世界数据集时,许多模型运行到一个关键问题:它们是在完全观察到的数据方面配制的,而在实践中,数据集会困扰缺失数据。来自不完整数据的统计模型估计理论在概念上类似于潜在变量模型的估计,其中存在强大的工具,例如变分推理(VI)。然而,与标准潜在变量模型相比,具有不完整数据的参数估计通常需要估计缺失变量的指数 - 许多条件分布,因此使标准的VI方法是棘手的。通过引入变分Gibbs推理(VGI),是一种新的通用方法来解决这个差距,以估计来自不完整数据的统计模型参数。我们在一组合成和实际估算任务上验证VGI,从不完整的数据中估算重要的机器学习模型,VAE和标准化流程。拟议的方法,同时通用,实现比现有的特定模型特定估计方法竞争或更好的性能。
translated by 谷歌翻译
变异推理(VI)的核心原理是将计算复杂后概率密度计算的统计推断问题转换为可拖动的优化问题。该属性使VI比几种基于采样的技术更快。但是,传统的VI算法无法扩展到大型数据集,并且无法轻易推断出越野数据点,而无需重新运行优化过程。该领域的最新发展,例如随机,黑框和摊销VI,已帮助解决了这些问题。如今,生成的建模任务广泛利用摊销VI来实现其效率和可扩展性,因为它利用参数化函数来学习近似的后验密度参数。在本文中,我们回顾了各种VI技术的数学基础,以构成理解摊销VI的基础。此外,我们还概述了最近解决摊销VI问题的趋势,例如摊销差距,泛化问题,不一致的表示学习和后验崩溃。最后,我们分析了改善VI优化的替代差异度量。
translated by 谷歌翻译
One of the core problems of modern statistics is to approximate difficult-to-compute probability densities. This problem is especially important in Bayesian statistics, which frames all inference about unknown quantities as a calculation involving the posterior density. In this paper, we review variational inference (VI), a method from machine learning that approximates probability densities through optimization. VI has been used in many applications and tends to be faster than classical methods, such as Markov chain Monte Carlo sampling. The idea behind VI is to first posit a family of densities and then to find the member of that family which is close to the target. Closeness is measured by Kullback-Leibler divergence. We review the ideas behind mean-field variational inference, discuss the special case of VI applied to exponential family models, present a full example with a Bayesian mixture of Gaussians, and derive a variant that uses stochastic optimization to scale up to massive data. We discuss modern research in VI and highlight important open problems. VI is powerful, but it is not yet well understood. Our hope in writing this paper is to catalyze statistical research on this class of algorithms.
translated by 谷歌翻译
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning.
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
概率程序为生成模型提供了表达性表示语言。给定概率程序,我们对后验推断的任务感兴趣:在给定一组观察到的变量的情况下,估计潜在变量。现有的概率计划中推断技术通常需要选择许多超参数,在计算上是昂贵的,并且/或仅适用于限制类别的程序。在这里,我们将推断作为掩盖语言建模:给定程序,我们生成了一个监督的变量和作业数据集,并随机掩盖了作业的子集。然后,我们训练神经网络以揭示随机值,从而定义了近似后验分布。通过在各种程序中优化单个神经网络,我们可以摊销培训的成本,从而产生“基础”后部能够对新程序进行零弹性推断。基础后验也可以通过优化变异推理目标来微调特定程序和数据集。我们在Stan程序的基准上显示了该方法的功效,零射和微调。
translated by 谷歌翻译
预测性编码提供了对皮质功能的潜在统一说明 - 假设大脑的核心功能是最小化有关世界生成模型的预测错误。该理论与贝叶斯大脑框架密切相关,在过去的二十年中,在理论和认知神经科学领域都产生了重大影响。基于经验测试的预测编码的改进和扩展的理论和数学模型,以及评估其在大脑中实施的潜在生物学合理性以及该理论所做的具体神经生理学和心理学预测。尽管存在这种持久的知名度,但仍未对预测编码理论,尤其是该领域的最新发展进行全面回顾。在这里,我们提供了核心数学结构和预测编码的逻辑的全面综述,从而补充了文献中最新的教程。我们还回顾了该框架中的各种经典和最新工作,从可以实施预测性编码的神经生物学现实的微电路到预测性编码和广泛使用的错误算法的重新传播之间的紧密关系,以及对近距离的调查。预测性编码和现代机器学习技术之间的关系。
translated by 谷歌翻译
Normalizing flows provide a general mechanism for defining expressive probability distributions, only requiring the specification of a (usually simple) base distribution and a series of bijective transformations. There has been much recent work on normalizing flows, ranging from improving their expressive power to expanding their application. We believe the field has now matured and is in need of a unified perspective. In this review, we attempt to provide such a perspective by describing flows through the lens of probabilistic modeling and inference. We place special emphasis on the fundamental principles of flow design, and discuss foundational topics such as expressive power and computational trade-offs. We also broaden the conceptual framing of flows by relating them to more general probability transformations. Lastly, we summarize the use of flows for tasks such as generative modeling, approximate inference, and supervised learning.
translated by 谷歌翻译
贝叶斯神经网络具有潜在变量(BNN + LVS)通过明确建模模型不确定性(通过网络权重)和环境暂停(通过潜在输入噪声变量)来捕获预测的不确定性。在这项工作中,我们首先表明BNN + LV具有严重形式的非可识别性:可以在模型参数和潜在变量之间传输解释性,同时拟合数据。我们证明,在无限数据的极限中,网络权重和潜变量的后部模式从地面真理渐近地偏离。由于这种渐近偏差,传统的推理方法可以在实践中,产量参数概括不确定和不确定的不确定性。接下来,我们开发一种新推断过程,明确地减轻了训练期间不可识别性的影响,并产生高质量的预测以及不确定性估计。我们展示我们的推理方法在一系列合成和实际数据集中改善了基准方法。
translated by 谷歌翻译
结构方程模型(SEM)是一种有效的框架,其原因是通过定向非循环图(DAG)表示的因果关系。最近的进步使得能够从观察数据中实现了DAG的最大似然点估计。然而,在实际场景中,可以不能准确地捕获在推断下面的底层图中的不确定性,其中真正的DAG是不可识别的并且/或观察到的数据集是有限的。我们提出了贝叶斯因果发现网(BCD网),一个变分推理框架,用于估算表征线性高斯SEM的DAG的分布。由于图形的离散和组合性质,开发一个完整的贝叶斯后面是挑战。我们通过表达变分别家庭分析可扩展VI的可扩展VI的关键设计选择,例如1)表达性变分别家庭,2)连续弛豫,使低方差随机优化和3)在潜在变量上具有合适的前置。我们提供了一系列关于实际和合成数据的实验,显示BCD网在低数据制度中的标准因果发现度量上的最大似然方法,例如结构汉明距离。
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
自动编码变化贝叶斯(AEVB)是一种用于拟合潜在变量模型(无监督学习的有前途的方向)的强大而通用的算法,并且是训练变量自动编码器(VAE)的众所周知的。在本教程中,我们专注于从经典的期望最大化(EM)算法中激励AEVB,而不是确定性自动编码器。尽管自然而有些不言而喻,但在最近的深度学习文献中并未强调EM与AEVB之间的联系,我们认为强调这种联系可以改善社区对AEVB的理解。特别是,我们发现(1)优化有关推理参数的证据下限(ELBO)作为近似E-step,并且(2)优化ELBO相对于生成参数作为近似M-step;然后,与AEVB中的同时进行同时进行,然后同时拧紧并推动Elbo。我们讨论如何将近似E-Step解释为执行变异推断。详细讨论了诸如摊销和修复技巧之类的重要概念。最后,我们从划痕中得出了非深度和几个深层变量模型的AEVB训练程序,包括VAE,有条件的VAE,高斯混合物VAE和变异RNN。我们希望读者能够将AEVB认识为一种通用算法,可用于拟合广泛的潜在变量模型(不仅仅是VAE),并将AEVB应用于自己的研究领域中出现的此类模型。所有纳入型号的Pytorch代码均可公开使用。
translated by 谷歌翻译
概率分布允许从业者发现数据中的隐藏结构,并构建模型,以使用有限的数据解决监督的学习问题。该报告的重点是变异自动编码器,这是一种学习大型复杂数据集概率分布的方法。该报告提供了对变异自动编码器的理论理解,并巩固了该领域的当前研究。该报告分为多个章节,第一章介绍了问题,描述了变异自动编码器并标识了该领域的关键研究方向。第2、3、4和5章深入研究了每个关键研究领域的细节。第6章总结了报告,并提出了未来工作的指示。具有机器学习基本思想但想了解机器学习研究中的一般主题的读者可以从报告中受益。该报告解释了有关学习概率分布的中心思想,人们为使这种危险做些什么,并介绍了有关当前如何应用深度学习的细节。该报告还为希望为这个子场做出贡献的人提供了温和的介绍。
translated by 谷歌翻译
最近推出的热集成技术已经了解并改善变推理(VI),提供了一个新的框架。在这项工作中,我们提出了热力学变目标(TVO)的仔细分析,弥合现有的变分目标和脱落的新见解,以推动该领域的差距。特别是,我们阐明了如何将TVO自然连接三个关键变方案,即重要性加权VI,仁义-VI,和MCMC-VI,它包含了最VI目标在实践中采用。为了解释理论和实践之间的性能差距,我们揭示热力学曲线的病理几何形状是如何产生负面影响TVO。通过推广加权平均持有人从几何平均值的整合路径,我们扩展TVO的理论和发现提高VI新的机遇。这促使我们的新VI的目标,命名为持有人的边界,这拼合热力学曲线和承诺,以实现精确的边缘数似然的一步逼近。提供对数字估计的选择的全面讨论。我们目前的合成和真实世界的数据集强有力的实证证据来支持我们的要求。
translated by 谷歌翻译
This paper presents a machine learning approach to multidimensional item response theory (MIRT), a class of latent factor models that can be used to model and predict student performance from observed assessment data. Inspired by collaborative filtering, we define a general class of models that includes many MIRT models. We discuss the use of penalized joint maximum likelihood (JML) to estimate individual models and cross-validation to select the best performing model. This model evaluation process can be optimized using batching techniques, such that even sparse large-scale data can be analyzed efficiently. We illustrate our approach with simulated and real data, including an example from a massive open online course (MOOC). The high-dimensional model fit to this large and sparse dataset does not lend itself well to traditional methods of factor interpretation. By analogy to recommender-system applications, we propose an alternative "validation" of the factor model, using auxiliary information about the popularity of items consulted during an open-book exam in the course.
translated by 谷歌翻译
我们提出了一种新的非参数混合物模型,用于多变量回归问题,灵感来自概率K-Nearthimest邻居算法。使用有条件指定的模型,对样本外输入的预测基于与每个观察到的数据点的相似性,从而产生高斯混合物表示的预测分布。在混合物组件的参数以及距离度量标准的参数上,使用平均场变化贝叶斯算法进行后推断,并具有基于随机梯度的优化过程。在与数据大小相比,输入 - 输出关系很复杂,预测分布可能偏向或多模式的情况下,输入相对较高的尺寸,该方法尤其有利。对五个数据集进行的计算研究,其中两个是合成生成的,这说明了我们的高维输入的专家混合物方法的明显优势,在验证指标和视觉检查方面都优于竞争者模型。
translated by 谷歌翻译
用冷冻电子显微镜(Cryo-EM)溶液中生物分子高分辨率成像的近期突破已经解锁了用于重建分子体积的新门,从而有望在其他人之间进一步进一步进展。尽管有很大的入脚,但Cryo-EM数据分析中的巨大挑战仍然是军团和错综复杂的自然间学科,需要物理学家,结构生物学家,计算机科学家,统计学家和应用数学家的见解。同时,最近的下一代卷重建算法与端到端无监督的深度学习技术相结合的生成建模已经显示了对模拟数据的有希望的结果,但在应用于实验Cryo-EM图像时仍然面临相当大的障碍。鉴于此类方法的增殖并鉴于任务的跨学科性质,我们提出了对高分辨率低分辨率建模领域的最近进步的批判性审查。目前的审查旨在(i)比较和对比这些新方法,而(ii)将它们从透视和使用科学家熟悉的术语呈现出来,在任何五个上述领域中没有Cryo-Em中没有具体的背景。审查始于引言介绍低温 - EM批量重建的深度生成模型的数学和计算挑战,同时概述了这类算法中共享的基线方法。通过这些不同的模型建立了常见的线程编织,我们提供了这些最先进的算法的实际比较,突出了它们的相对优势和劣势以及它们依赖的假设。这使我们能够识别当前方法和途径的瓶颈,以便将来的研究。
translated by 谷歌翻译
因果推断对于跨业务参与,医疗和政策制定等领域的数据驱动决策至关重要。然而,关于因果发现的研究已经与推理方法分开发展,从而阻止了两个领域方法的直接组合。在这项工作中,我们开发了深层端到端因果推理(DECI),这是一种基于流动的非线性添加噪声模型,该模型具有观察数据,并且可以执行因果发现和推理,包括有条件的平均治疗效果(CATE) )估计。我们提供了理论上的保证,即DECI可以根据标准因果发现假设恢复地面真实因果图。受应用影响的激励,我们将该模型扩展到具有缺失值的异质,混合型数据,从而允许连续和离散的治疗决策。我们的结果表明,与因果发现的相关基线相比,DECI的竞争性能和(c)在合成数据集和因果机器学习基准测试基准的一千多个实验中,跨数据类型和缺失水平进行了估计。
translated by 谷歌翻译
We develop stochastic variational inference, a scalable algorithm for approximating posterior distributions. We develop this technique for a large class of probabilistic models and we demonstrate it with two probabilistic topic models, latent Dirichlet allocation and the hierarchical Dirichlet process topic model. Using stochastic variational inference, we analyze several large collections of documents: 300K articles from Nature, 1.8M articles from The New York Times, and 3.8M articles from Wikipedia. Stochastic inference can easily handle data sets of this size and outperforms traditional variational inference, which can only handle a smaller subset. (We also show that the Bayesian nonparametric topic model outperforms its parametric counterpart.) Stochastic variational inference lets us apply complex Bayesian models to massive data sets.
translated by 谷歌翻译