Recently, improving the robustness of policies across different environments attracts increasing attention in the reinforcement learning (RL) community. Existing robust RL methods mostly aim to achieve the max-min robustness by optimizing the policy's performance in the worst-case environment. However, in practice, a user that uses an RL policy may have different preferences over its performance across environments. Clearly, the aforementioned max-min robustness is oftentimes too conservative to satisfy user preference. Therefore, in this paper, we integrate user preference into policy learning in robust RL, and propose a novel User-Oriented Robust RL (UOR-RL) framework. Specifically, we define a new User-Oriented Robustness (UOR) metric for RL, which allocates different weights to the environments according to user preference and generalizes the max-min robustness metric. To optimize the UOR metric, we develop two different UOR-RL training algorithms for the scenarios with or without a priori known environment distribution, respectively. Theoretically, we prove that our UOR-RL training algorithms converge to near-optimal policies even with inaccurate or completely no knowledge about the environment distribution. Furthermore, we carry out extensive experimental evaluations in 4 MuJoCo tasks. The experimental results demonstrate that UOR-RL is comparable to the state-of-the-art baselines under the average and worst-case performance metrics, and more importantly establishes new state-of-the-art performance under the UOR metric.
translated by 谷歌翻译
政策梯度(PG)算法是备受期待的强化学习对现实世界控制任务(例如机器人技术)的最佳候选人之一。但是,每当必须在物理系统上执行学习过程本身或涉及任何形式的人类计算机相互作用时,这些方法的反复试验性质就会提出安全问题。在本文中,我们解决了一种特定的安全公式,其中目标和危险都以标量奖励信号进行编码,并且学习代理被限制为从不恶化其性能,以衡量为预期的奖励总和。通过从随机优化的角度研究仅行为者的政策梯度,我们为广泛的参数政策建立了改进保证,从而将现有结果推广到高斯政策上。这与策略梯度估计器的差异的新型上限一起,使我们能够识别出具有很高概率的单调改进的元参数计划。两个关键的元参数是参数更新的步长和梯度估计的批处理大小。通过对这些元参数的联合自适应选择,我们获得了具有单调改进保证的政策梯度算法。
translated by 谷歌翻译
在钢筋学习中,体验重播存储过去的样本以进一步重用。优先采样是一个有希望的技术,可以更好地利用这些样品。以前的优先级标准包括TD误差,近似和纠正反馈,主要是启发式设计。在这项工作中,我们从遗憾最小化目标开始,并获得最佳的贝尔曼更新优先级探讨策略,可以直接最大化策略的返回。该理论表明,具有较高后视TD误差的数据,应在采样期间具有更高权重的重量来分配更高的Hindsight TD误差,更好的政策和更准确的Q值。因此,最先前的标准只会部分考虑这一战略。我们不仅为以前的标准提供了理论理由,还提出了两种新方法来计算优先级重量,即remern并恢复。 remern学习错误网络,而remert利用状态的时间顺序。这两种方法都以先前的优先考虑的采样算法挑战,包括Mujoco,Atari和Meta-World。
translated by 谷歌翻译
尽管深度强化学习(DRL)取得了巨大的成功,但由于过渡和观察的内在不确定性,它可能遇到灾难性的失败。大多数现有的安全加固学习方法只能处理过渡干扰或观察障碍,因为这两种干扰影响了代理的不同部分。此外,受欢迎的最坏情况可能会导致过度悲观的政策。为了解决这些问题,我们首先从理论上证明了在过渡干扰和观察障碍下的性能降解取决于一个新颖的价值函数范围(VFR),这与最佳状态和最坏状态之间的价值函数的间隙相对应。基于分析,我们采用有条件的价值风险(CVAR)作为对风险的评估,并提出了一种新颖的强化学习算法的CVAR-Proximal-Policy-oftimization(CPPO),该算法通过保持风险敏感的约束优化问题形式化。它的CVAR在给定的阈值下。实验结果表明,CPPO获得了更高的累积奖励,并且在Mujoco中一系列连续控制任务上的观察和过渡干扰更加强大。
translated by 谷歌翻译
作为安全加强学习的重要框架,在最近的文献中已经广泛研究了受约束的马尔可夫决策过程(CMDP)。然而,尽管在各种式学习设置下取得了丰富的结果,但就算法设计和信息理论样本复杂性下限而言,仍然缺乏对离线CMDP问题的基本理解。在本文中,我们专注于仅在脱机数据可用的情况下解决CMDP问题。通过采用单极浓缩系数$ c^*$的概念,我们建立了一个$ \ omega \ left(\ frac {\ min \ left \ left \ weft \ {| \ mathcal {s} || \ mathcal {a} a} |,, | \ Mathcal {s} |+i \ right \} c^*} {(1- \ gamma)^3 \ epsilon^2} \ right)$ sample Complacy度在离线cmdp问题上,其中$ i $架对于约束数量。通过引入一种简单但新颖的偏差控制机制,我们提出了一种称为DPDL的近乎最佳的原始二重学习算法。该算法证明,除了$ \ tilde {\ Mathcal {o}}}}(((1- \ gamma)^{ - 1})$外,该算法可确保零约束违规及其样本复杂性匹配上下界。还包括有关如何处理未知常数$ c^*$以及离线数据集中潜在的异步结构的全面讨论。
translated by 谷歌翻译
重要性采样(IS)是非政策评估中的一种流行技术,它重新赋予了重播缓冲液中轨迹的回归以提高样本效率。但是,对IS进行培训可能是不稳定的,以前试图解决此问题的尝试主要集中于分析IS的差异。在本文中,我们揭示了不稳定性与IS的重复使用偏见的新概念有关 - 由重复使用缓冲液重用进行评估和优化引起的非政策评估偏差。从理论上讲,我们证明了对当前策略的非政策评估和优化,并通过重播缓冲区的数据导致目标高估,这可能会导致错误的梯度更新并退化性能。我们进一步提供了重复使用偏差的高概率上限,并表明控制上限的一个项可以通过引入非政策算法的稳定性概念来控制重复使用偏置。基于这些分析,我们最终提出了一种新颖的偏见调查重要性抽样(BIRIS)框架以及实际算法,可以减轻重复使用偏见的负面影响。实验结果表明,我们基于BIRIS的方法可以显着提高一系列连续控制任务的样品效率。
translated by 谷歌翻译
Epsilon-Greedy,SoftMax或Gaussian噪声等近视探索政策在某些强化学习任务中无法有效探索,但是在许多其他方面,它们的表现都很好。实际上,实际上,由于简单性,它们通常被选为最佳选择。但是,对于哪些任务执行此类政策成功?我们可以为他们的有利表现提供理论保证吗?尽管这些政策具有显着的实际重要性,但这些关键问题几乎没有得到研究。本文介绍了对此类政策的理论分析,并为通过近视探索提供了对增强学习的首次遗憾和样本复杂性。我们的结果适用于具有有限的Bellman Eluder维度的情节MDP中的基于价值功能的算法。我们提出了一种新的复杂度度量,称为近视探索差距,用Alpha表示,该差距捕获了MDP的结构属性,勘探策略和给定的值函数类别。我们表明,近视探索的样品复杂性与该数量的倒数1 / alpha^2二次地量表。我们通过具体的例子进一步证明,由于相应的动态和奖励结构,在近视探索成功的几项任务中,近视探索差距确实是有利的。
translated by 谷歌翻译
Effectively leveraging large, previously collected datasets in reinforcement learning (RL) is a key challenge for large-scale real-world applications. Offline RL algorithms promise to learn effective policies from previously-collected, static datasets without further interaction. However, in practice, offline RL presents a major challenge, and standard off-policy RL methods can fail due to overestimation of values induced by the distributional shift between the dataset and the learned policy, especially when training on complex and multi-modal data distributions. In this paper, we propose conservative Q-learning (CQL), which aims to address these limitations by learning a conservative Q-function such that the expected value of a policy under this Q-function lower-bounds its true value. We theoretically show that CQL produces a lower bound on the value of the current policy and that it can be incorporated into a policy learning procedure with theoretical improvement guarantees. In practice, CQL augments the standard Bellman error objective with a simple Q-value regularizer which is straightforward to implement on top of existing deep Q-learning and actor-critic implementations. On both discrete and continuous control domains, we show that CQL substantially outperforms existing offline RL methods, often learning policies that attain 2-5 times higher final return, especially when learning from complex and multi-modal data distributions.Preprint. Under review.
translated by 谷歌翻译
在标准数据分析框架中,首先收集数据(全部一次),然后进行数据分析。此外,通常认为数据生成过程是外源性的。当数据分析师对数据的生成方式没有影响时,这种方法是自然的。但是,数字技术的进步使公司促进了从数据中学习并同时做出决策。随着这些决定生成新数据,数据分析师(业务经理或算法)也成为数据生成器。这种相互作用会产生一种新型的偏见 - 增强偏见 - 加剧了静态数据分析中的内生性问题。因果推理技术应该被纳入加强学习中以解决此类问题。
translated by 谷歌翻译
在钢筋学习(RL)中,代理必须探索最初未知的环境,以便学习期望的行为。当RL代理部署在现实世界环境中时,安全性是主要关注的。受约束的马尔可夫决策过程(CMDPS)可以提供长期的安全约束;但是,该代理人可能会违反探索其环境的制约因素。本文提出了一种称为显式探索,漏洞探索或转义($ e ^ {4} $)的基于模型的RL算法,它将显式探索或利用($ e ^ {3} $)算法扩展到强大的CMDP设置。 $ e ^ 4 $明确地分离开发,探索和逃脱CMDP,允许针对已知状态的政策改进的有针对性的政策,发现未知状态,以及安全返回到已知状态。 $ e ^ 4 $强制优化了从一组CMDP模型的最坏情况CMDP上的这些策略,该模型符合部署环境的经验观察。理论结果表明,在整个学习过程中满足安全限制的情况下,在多项式时间中找到近最优的约束政策。我们讨论了稳健约束的离线优化算法,以及如何基于经验推理和先验知识来结合未知状态过渡动态的不确定性。
translated by 谷歌翻译
我们在$ \ Gamma $ -diScounted MDP中使用Polyak-Ruppert平均(A.K.A.,平均Q-Leaning)进行同步Q学习。我们为平均迭代$ \ bar {\ boldsymbol {q}}建立渐近常态。此外,我们展示$ \ bar {\ boldsymbol {q}} _ t $实际上是一个常规的渐近线性(RAL)估计值,用于最佳q-value函数$ \ boldsymbol {q} ^ * $与最有效的影响功能。它意味着平均Q学习迭代在所有RAL估算器之间具有最小的渐近方差。此外,我们为$ \ ell _ {\ infty} $错误$ \ mathbb {e} \ | \ | \ bar {\ boldsymbol {q}} _ t- \ boldsymbol {q} ^ *} ^ *} _ {\ idty} $,显示它与实例相关的下限以及最佳最低限度复杂性下限。作为一个副产品,我们发现Bellman噪音具有var-gaussian坐标,具有方差$ \ mathcal {o}((1- \ gamma)^ {-1})$而不是现行$ \ mathcal {o}((1- \ Gamma)^ { - 2})$根据标准界限奖励假设。子高斯结果有可能提高许多R1算法的样本复杂性。简而言之,我们的理论分析显示平均Q倾斜在统计上有效。
translated by 谷歌翻译
离线增强学习(RL)可以从先前收集的数据中进行有效的学习,而无需探索,这在探索昂贵甚至不可行时在现实世界应用中显示出巨大的希望。折扣因子$ \ gamma $在提高在线RL样本效率和估计准确性方面起着至关重要的作用,但是折现因子在离线RL中的作用尚未得到很好的探索。本文研究了$ \ gamma $在离线RL中的两个明显影响,并通过理论分析,即正则化效果和悲观效应。一方面,$ \ gamma $是在现有离线技术下以样本效率而定的最佳选择的监管机构。另一方面,较低的指导$ \ gamma $也可以看作是一种悲观的方式,我们在最坏的模型中优化了政策的性能。我们通过表格MDP和标准D4RL任务从经验上验证上述理论观察。结果表明,折现因子在离线RL算法的性能中起着至关重要的作用,无论是在现有的离线方法的小型数据制度下还是在没有其他保守主义的大型数据制度中。
translated by 谷歌翻译
我们研究了平均奖励马尔可夫决策过程(AMDP)的问题,并开发了具有强大理论保证的新型一阶方法,以进行政策评估和优化。由于缺乏勘探,现有的彻底评估方法遭受了次优融合率以及处理不足的随机策略(例如确定性政策)的失败。为了解决这些问题,我们开发了一种新颖的差异时间差异(VRTD)方法,具有随机策略的线性函数近似以及最佳收敛保证,以及一种探索性方差降低的时间差(EVRTD)方法,用于不充分的随机策略,可相当的融合保证。我们进一步建立了政策评估偏见的线性收敛速率,这对于改善策略优化的总体样本复杂性至关重要。另一方面,与对MDP的政策梯度方法的有限样本分析相比,对AMDP的策略梯度方法的现有研究主要集中在基础马尔可夫流程的限制性假设下(例如,参见Abbasi-e, Yadkori等人,2019年),他们通常缺乏整体样本复杂性的保证。为此,我们开发了随机策略镜下降(SPMD)的平均奖励变体(LAN,2022)。我们建立了第一个$ \ widetilde {\ Mathcal {o}}(\ epsilon^{ - 2})$样品复杂性,用于在生成模型(带有UNICHAIN假设)和Markovian Noise模型(使用Ergodicicic Modele(具有核能的模型)下,使用策略梯度方法求解AMDP假设)。该界限可以进一步改进到$ \ widetilde {\ Mathcal {o}}}(\ epsilon^{ - 1})$用于求解正则化AMDPS。我们的理论优势通过数值实验来证实。
translated by 谷歌翻译
代表学习呈现在深入学习的经验成功的核心,以处理维度的诅咒。然而,由于i),表现力(RL)的钢筋学习(RL)尚未充分利用卓越的能力,表现力和易疏忽之间的权衡;二世),探索与代表学习之间的耦合。在本文中,我们首先揭示了在随机控制模型中的一些噪声假设下,我们可以免费获得其相应的马尔可夫过渡操作员的线性谱特征。基于该观察,我们提出了嵌入(Spede)的谱动力学嵌入(SPEDE),这将通过利用噪声结构来完成对代表学习的乐观探索。我们提供对Speded的严格理论分析,并展示了几种基准上现有最先进的实证算法的实际卓越性能。
translated by 谷歌翻译
In robust Markov decision processes (MDPs), the uncertainty in the transition kernel is addressed by finding a policy that optimizes the worst-case performance over an uncertainty set of MDPs. While much of the literature has focused on discounted MDPs, robust average-reward MDPs remain largely unexplored. In this paper, we focus on robust average-reward MDPs, where the goal is to find a policy that optimizes the worst-case average reward over an uncertainty set. We first take an approach that approximates average-reward MDPs using discounted MDPs. We prove that the robust discounted value function converges to the robust average-reward as the discount factor $\gamma$ goes to $1$, and moreover, when $\gamma$ is large, any optimal policy of the robust discounted MDP is also an optimal policy of the robust average-reward. We further design a robust dynamic programming approach, and theoretically characterize its convergence to the optimum. Then, we investigate robust average-reward MDPs directly without using discounted MDPs as an intermediate step. We derive the robust Bellman equation for robust average-reward MDPs, prove that the optimal policy can be derived from its solution, and further design a robust relative value iteration algorithm that provably finds its solution, or equivalently, the optimal robust policy.
translated by 谷歌翻译
非政策评估和学习(OPE/L)使用离线观察数据来做出更好的决策,这对于在线实验有限的应用至关重要。但是,完全取决于记录的数据,OPE/L对环境分布的变化很敏感 - 数据生成环境和部署策略的差异。 \ citet {si2020distributional}提议的分布在稳健的OPE/L(Drope/L)解决此问题,但该提案依赖于逆向权重,如果估计错误和遗憾,如果倾向是非参数估计的,即使其差异是次级估计,即使是次级估计的,其估计错误和遗憾将降低。对于标准的,非体,OPE/L,这是通过双重鲁棒(DR)方法来解决的,但它们并不自然地扩展到更复杂的drop/l,涉及最糟糕的期望。在本文中,我们提出了具有KL-Divergence不确定性集的DROPE/L的第一个DR算法。为了进行评估,我们提出了局部双重稳健的drope(LDR $^2 $ ope),并表明它在弱产品速率条件下实现了半摩托效率。多亏了本地化技术,LDR $^2 $ OPE仅需要安装少量回归,就像标准OPE的DR方法一样。为了学习,我们提出了连续的双重稳健下降(CDR $^2 $ opl),并表明,在涉及连续回归的产品速率条件下,它具有$ \ Mathcal {o} \ left的快速后悔率(n^) {-1/2} \ right)$即使未知的倾向是非参数估计的。我们从经验上验证了模拟中的算法,并将结果进一步扩展到一般$ f $ divergence的不确定性集。
translated by 谷歌翻译
我们研究奖励设计策略,用于激励加强学习代理,从一系列可接受的政策中采用政策。奖励设计师的目标是经济高效地修改底层奖励功能,同时确保在新奖励功能下的任何大约最佳的确定性政策是可允许的,并且在原始奖励功能下执行良好。这个问题可以被视为最佳奖励中毒攻击问题的双重问题:而不是强制代理商采用特定的政策,而奖励设计师则激励一个代理人以避免采取某些州不可受理的行动。也许令人惊讶的是,与最佳奖励中毒攻击的问题相比,我们首先表明可允许的政策教学的奖励设计问题是在计算上具有挑战性的,并且难以找到近似最佳的奖励修改。然后,我们通过制定最佳解决方案的代理问题,其最佳解决方案近似于我们的环境中奖励设计问题的最佳解决方案,但更适用于优化技术和分析。对于此替代问题,我们呈现了在最佳解决方案的值上提供限制的表征结果。最后,我们设计了一个本地搜索算法来解决代理问题,并使用基于模拟的实验展示其实用程序。
translated by 谷歌翻译
我们研究具有多个奖励价值函数的马尔可夫决策过程(MDP)的政策优化,应根据给定的标准共同优化,例如比例公平(平滑凹面标量),硬约束(约束MDP)和Max-Min Trade-离开。我们提出了一个改变锚定的正规自然政策梯度(ARNPG)框架,该框架可以系统地将良好表现的一阶方法中的思想纳入多目标MDP问题的策略优化算法的设计。从理论上讲,基于ARNPG框架的设计算法实现了$ \ tilde {o}(1/t)$全局收敛,并具有精确的梯度。从经验上讲,与某些现有的基于策略梯度的方法相比,ARNPG引导的算法在精确梯度和基于样本的场景中也表现出卓越的性能。
translated by 谷歌翻译
我们提出了一个新的学习框架,该框架捕获了许多真实世界用户交互应用程序的分层结构,在该框架中,可以根据探索风险的不同公差将用户分为两组,并应分别处理。在这种情况下,我们同时维护两个政策$ \ pi^{\ text {o}} $和$ \ pi^{\ text {e}} $:$ \ pi^{\ pi^{\ text {o}}} $(“ o “对于“在线”)与第一层的更具风险的用户进行互动,并像往常一样平衡探索和剥削来最大程度地减少后悔,而$ \ pi^{\ text {e}} $(“ e” for“ exploit”)专注于利用到目前为止收集的数据,从第二层的规避风险用户进行剥削。一个重要的问题是,这种分离是否比标准在线设置(即$ \ pi^{\ text {e}} = \ pi^{\ text {o}} $)是否产生优势。我们单独考虑与差距无关的与差距依赖性设置。对于前者来说,我们证明从最小值的角度来看,分离确实不是有益的。对于后者,我们表明,如果选择悲观的价值迭代作为剥削算法来产生$ \ pi^{\ text {e}} $,我们可以不断地对无独立的风险用户$ k的数量来实现遗憾$,与$ \ omega(\ log k)$相同的$ \ omega(\ log k)$在同一环境中遗憾在线遗憾的最优性,不需要为成功的成功而妥协。
translated by 谷歌翻译
我们考虑在离线域中的强化学习(RL)方法,没有其他在线数据收集,例如移动健康应用程序。计算机科学文献中的大多数现有策略优化算法都是在易于收集或模拟的在线设置中开发的。通过预采用的离线数据集,它们对移动健康应用程序的概括尚不清楚。本文的目的是开发一个新颖的优势学习框架,以便有效地使用预采用的数据进行策略优化。所提出的方法采用由任何现有的最新RL算法计算的最佳Q-估计器作为输入,并输出一项新策略,其价值比基于初始Q-得出的策略更快地收敛速度。估计器。进行广泛的数值实验以支持我们的理论发现。我们提出的方法的Python实现可在https://github.com/leyuanheart/seal上获得。
translated by 谷歌翻译