Partitioning an image into superpixels based on the similarity of pixels with respect to features such as colour or spatial location can significantly reduce data complexity and improve subsequent image processing tasks. Initial algorithms for unsupervised superpixel generation solely relied on local cues without prioritizing significant edges over arbitrary ones. On the other hand, more recent methods based on unsupervised deep learning either fail to properly address the trade-off between superpixel edge adherence and compactness or lack control over the generated number of superpixels. By using random images with strong spatial correlation as input, \ie, blurred noise images, in a non-convolutional image decoder we can reduce the expected number of contrasts and enforce smooth, connected edges in the reconstructed image. We generate edge-sparse pixel embeddings by encoding additional spatial information into the piece-wise smooth activation maps from the decoder's last hidden layer and use a standard clustering algorithm to extract high quality superpixels. Our proposed method reaches state-of-the-art performance on the BSDS500, PASCAL-Context and a microscopy dataset.
translated by 谷歌翻译
Superpixels在众多计算机视觉任务中用作强大的预处理工具。通过使用Superpixel表示,图像基元的数量可以大大降低倍数。随着近年来深度学习的兴起,少数作品试图将深受学习的特征/图饲养成现有的经典超像素技术。然而,他们都没有能够在近乎实时生产超像素,这对超像素在实践中适用性至关重要。在这项工作中,我们提出了一个基于图形的基于图形的Superpixel分割框架。在第一阶段,我们介绍了一种高效的深度亲和学习(DAL)网络,通过聚合多尺度信息来学习成对像素亲和力。在第二阶段,我们提出了一种称为分层熵速率分割(HERS)的高效超像素方法。使用来自第一阶段的学习亲和力,HERS构建了一个分层树结构,可以瞬间产生任何数量的高度自适应超像素。我们通过视觉和数值实验证明,我们的方法的有效性和效率与各种最先进的超像素方法相比。
translated by 谷歌翻译
人类生理学中的各种结构遵循特异性形态,通常在非常细的尺度上表达复杂性。这种结构的例子是胸前气道,视网膜血管和肝血管。可以观察到可以观察到可以观察到可以观察到可以观察到空间排列的磁共振成像(MRI),计算机断层扫描(CT),光学相干断层扫描(OCT)等医学成像模式(MRI),计算机断层扫描(CT),可以观察到空间排列的大量2D和3D图像的集合。这些结构在医学成像中的分割非常重要,因为对结构的分析提供了对疾病诊断,治疗计划和预后的见解。放射科医生手动标记广泛的数据通常是耗时且容易出错的。结果,在过去的二十年中,自动化或半自动化的计算模型已成为医学成像的流行研究领域,迄今为止,许多计算模型已经开发出来。在这项调查中,我们旨在对当前公开可用的数据集,细分算法和评估指标进行全面审查。此外,讨论了当前的挑战和未来的研究方向。
translated by 谷歌翻译
必须在密集的注释图像上培训最先进的实例分段方法。虽然一般而言,这一要求对于生物医学图像尤其令人生畏,其中域专业知识通常需要注释,没有大的公共数据收集可用于预培训。我们建议通过基于非空间嵌入的非空间嵌入的联盟分割方法来解决密集的注释瓶颈,该方法利用所学习的嵌入空间的结构以可分散的方式提取单个实例。然后可以将分割损耗直接应用于实例,整体管道可以以完全或弱监督的方式培训,包括积极解贴的监管的具有挑战性的情况,其中为未标记的部分引入了一种新的自我监督的一致性损失训练数据。我们在不同显微镜模型以及城市景观和CVPPP实例分段基准中评估了对2D和3D分段问题的提出的方法,在后者上实现最先进的结果。该代码可用于:https://github.com/kreshuklab/spoco
translated by 谷歌翻译
捕获图像的全局拓扑对于提出对其域的准确分割至关重要。但是,大多数现有的分割方法都不能保留给定输入的初始拓扑,这对许多下游基于对象的任务有害。对于大多数在本地尺度上工作的深度学习模型来说,这是更真实的。在本文中,我们提出了一种新的拓扑深度图像分割方法,该方法依赖于新的泄漏损失:Pathloss。我们的方法是Baloss [1]的扩展,其中我们希望改进泄漏检测,以更好地恢复图像分割的接近度。这种损失使我们能够正确定位并修复预测中可能发生的关键点(边界中的泄漏),并基于最短路径搜索算法。这样,损失最小化仅在必要时才能强制连接,并最终提供了图像中对象边界的良好定位。此外,根据我们的研究,与无需使用拓扑损失的方法相比,我们的Pathloss学会了保持更强的细长结构。通过我们的拓扑损失函数培训,我们的方法在两个代表性数据集上优于最先进的拓扑感知方法:电子显微镜和历史图。
translated by 谷歌翻译
We propose "factor matting", an alternative formulation of the video matting problem in terms of counterfactual video synthesis that is better suited for re-composition tasks. The goal of factor matting is to separate the contents of video into independent components, each visualizing a counterfactual version of the scene where contents of other components have been removed. We show that factor matting maps well to a more general Bayesian framing of the matting problem that accounts for complex conditional interactions between layers. Based on this observation, we present a method for solving the factor matting problem that produces useful decompositions even for video with complex cross-layer interactions like splashes, shadows, and reflections. Our method is trained per-video and requires neither pre-training on external large datasets, nor knowledge about the 3D structure of the scene. We conduct extensive experiments, and show that our method not only can disentangle scenes with complex interactions, but also outperforms top methods on existing tasks such as classical video matting and background subtraction. In addition, we demonstrate the benefits of our approach on a range of downstream tasks. Please refer to our project webpage for more details: https://factormatte.github.io
translated by 谷歌翻译
本文介绍了一种来自单个离焦图像的边缘散焦模糊估计方法。我们首先将位于深度不连续(称为深度边缘的边缘)的边缘区分从近似恒定的深度区域(称为模糊估计的被称为模糊估计的图案边缘)的边缘中的深度不连续性(含义模糊估计是模糊的)。然后,我们仅估计图案边缘的散焦模糊量,并探索基于引导滤波器的内插方案,该导向滤波器防止检测到的深度边缘的数据传播,以获得具有明确定义的对象边界的密集模糊图。两个任务(边缘分类和模糊估计)由深度卷积神经网络(CNNS)执行,该网络(CNN)共享权重以从边缘位置为中心的多尺度补丁学习有意义的本地特征。在自然散焦的图像上的实验表明,该方法提出了优异的最先进(SOTA)方法的定性和定量结果,在运行时间和准确度之间具有良好的折衷。
translated by 谷歌翻译
深度图像先验表明,通过简单地优化它的参数来重建单个降级图像,可以训练具有合适架构的随机初始化网络以解决反向成像问题。但是,它受到了两个实际限制。首先,它仍然不清楚如何在网络架构选择之前控制。其次,培训需要Oracle停止标准,因为在优化期间,在达到最佳值后性能降低。为了解决这些挑战,我们引入频带对应度量以表征在之前的深图像的光谱偏压,其中低频图像信号比高频对应物更快且更好地学习。根据我们的观察,我们提出了防止最终性能下降和加速收敛的技术。我们介绍了Lipschitz受控的卷积层和高斯控制的上采样层,作为深度架构中使用的层的插件替代品。实验表明,随着这些变化,在优化期间,性能不会降低,从需要对Oracle停止标准的需求中脱离我们。我们进一步勾勒出停止标准以避免多余的计算。最后,我们表明我们的方法与各种去噪,去块,染色,超级分辨率和细节增强任务的当前方法相比获得了有利的结果。代码可用于\ url {https:/github.com/shizenglin/measure-and-control-spectraL-bias}。
translated by 谷歌翻译
我们提出了一种新颖的方法,该方法将基于机器学习的交互式图像分割结合在一起,使用Supersoxels与聚类方法结合了用于自动识别大型数据集中类似颜色的图像的聚类方法,从而使分类器的指导重复使用。我们的方法解决了普遍的颜色可变性的问题,并且在生物学和医学图像中通常不可避免,这通常会导致分割恶化和量化精度,从而大大降低了必要的训练工作。效率的这种提高促进了大量图像的量化,从而为高通量成像中的最新技术进步提供了交互式图像分析。所呈现的方法几乎适用于任何图像类型,并代表通常用于图像分析任务的有用工具。
translated by 谷歌翻译
We pose video object segmentation as spectral graph clustering in space and time, with one graph node for each pixel and edges forming local space-time neighborhoods. We claim that the strongest cluster in this video graph represents the salient object. We start by introducing a novel and efficient method based on 3D filtering for approximating the spectral solution, as the principal eigenvector of the graph's adjacency matrix, without explicitly building the matrix. This key property allows us to have a fast parallel implementation on GPU, orders of magnitude faster than classical approaches for computing the eigenvector. Our motivation for a spectral space-time clustering approach, unique in video semantic segmentation literature, is that such clustering is dedicated to preserving object consistency over time, which we evaluate using our novel segmentation consistency measure. Further on, we show how to efficiently learn the solution over multiple input feature channels. Finally, we extend the formulation of our approach beyond the segmentation task, into the realm of object tracking. In extensive experiments we show significant improvements over top methods, as well as over powerful ensembles that combine them, achieving state-of-the-art on multiple benchmarks, both for tracking and segmentation.
translated by 谷歌翻译
Learning object-centric representations of complex scenes is a promising step towards enabling efficient abstract reasoning from low-level perceptual features. Yet, most deep learning approaches learn distributed representations that do not capture the compositional properties of natural scenes. In this paper, we present the Slot Attention module, an architectural component that interfaces with perceptual representations such as the output of a convolutional neural network and produces a set of task-dependent abstract representations which we call slots. These slots are exchangeable and can bind to any object in the input by specializing through a competitive procedure over multiple rounds of attention. We empirically demonstrate that Slot Attention can extract object-centric representations that enable generalization to unseen compositions when trained on unsupervised object discovery and supervised property prediction tasks.
translated by 谷歌翻译
传统上,本征成像或内在图像分解被描述为将图像分解为两层:反射率,材料的反射率;和一个阴影,由光和几何之间的相互作用产生。近年来,深入学习技术已广泛应用,以提高这些分离的准确性。在本调查中,我们概述了那些在知名内在图像数据集和文献中使用的相关度量的结果,讨论了预测所需的内在图像分解的适用性。虽然Lambertian的假设仍然是许多方法的基础,但我们表明,对图像形成过程更复杂的物理原理组件的潜力越来越意识到,这是光学准确的材料模型和几何形状,更完整的逆轻型运输估计。考虑使用的前瞻和模型以及驾驶分解过程的学习架构和方法,我们将这些方法分类为分解的类型。考虑到最近神经,逆和可微分的渲染技术的进步,我们还提供了关于未来研究方向的见解。
translated by 谷歌翻译
随着脑成像技术和机器学习工具的出现,很多努力都致力于构建计算模型来捕获人脑中的视觉信息的编码。最具挑战性的大脑解码任务之一是通过功能磁共振成像(FMRI)测量的脑活动的感知自然图像的精确重建。在这项工作中,我们调查了来自FMRI的自然图像重建的最新学习方法。我们在架构设计,基准数据集和评估指标方面检查这些方法,并在标准化评估指标上呈现公平的性能评估。最后,我们讨论了现有研究的优势和局限,并提出了潜在的未来方向。
translated by 谷歌翻译
引导过滤器是计算机视觉和计算机图形中的基本工具,旨在将结构信息从引导图像传输到目标图像。大多数现有方法构造来自指导本身的滤波器内核,而不考虑指导和目标之间的相互依赖性。然而,由于两种图像中通常存在显着不同的边沿,只需将引导的所有结构信息传送到目标即将导致各种伪像。要应对这个问题,我们提出了一个名为Deep Enterponal引导图像过滤的有效框架,其过滤过程可以完全集成两个图像中包含的互补信息。具体地,我们提出了一种注意力内核学习模块,分别从引导和目标生成双组滤波器内核,然后通过在两个图像之间建模像素方向依赖性来自适应地组合它们。同时,我们提出了一种多尺度引导图像滤波模块,以粗略的方式通过所构造的内核逐渐产生滤波结果。相应地,引入了多尺度融合策略以重用中间导点在粗略的过程中。广泛的实验表明,所提出的框架在广泛的引导图像滤波应用中,诸如引导超分辨率,横向模态恢复,纹理拆除和语义分割的最先进的方法。
translated by 谷歌翻译
Deep convolutional networks have become a popular tool for image generation and restoration. Generally, their excellent performance is imputed to their ability to learn realistic image priors from a large number of example images. In this paper, we show that, on the contrary, the structure of a generator network is sufficient to capture a great deal of low-level image statistics prior to any learning. In order to do so, we show that a randomly-initialized neural network can be used as a handcrafted prior with excellent results in standard inverse problems such as denoising, superresolution, and inpainting. Furthermore, the same prior can be used to invert deep neural representations to diagnose them, and to restore images based on flash-no flash input pairs.
translated by 谷歌翻译
Implicitly defined, continuous, differentiable signal representations parameterized by neural networks have emerged as a powerful paradigm, offering many possible benefits over conventional representations. However, current network architectures for such implicit neural representations are incapable of modeling signals with fine detail, and fail to represent a signal's spatial and temporal derivatives, despite the fact that these are essential to many physical signals defined implicitly as the solution to partial differential equations. We propose to leverage periodic activation functions for implicit neural representations and demonstrate that these networks, dubbed sinusoidal representation networks or SIRENs, are ideally suited for representing complex natural signals and their derivatives. We analyze SIREN activation statistics to propose a principled initialization scheme and demonstrate the representation of images, wavefields, video, sound, and their derivatives. Further, we show how SIRENs can be leveraged to solve challenging boundary value problems, such as particular Eikonal equations (yielding signed distance functions), the Poisson equation, and the Helmholtz and wave equations. Lastly, we combine SIRENs with hypernetworks to learn priors over the space of SIREN functions. Please see the project website for a video overview of the proposed method and all applications.
translated by 谷歌翻译
机器学习的最近进步已经创造了利用一类基于坐标的神经网络来解决视觉计算问题的兴趣,该基于坐标的神经网络在空间和时间跨空间和时间的场景或对象的物理属性。我们称之为神经领域的这些方法已经看到在3D形状和图像的合成中成功应用,人体的动画,3D重建和姿势估计。然而,由于在短时间内的快速进展,许多论文存在,但尚未出现全面的审查和制定问题。在本报告中,我们通过提供上下文,数学接地和对神经领域的文学进行广泛综述来解决这一限制。本报告涉及两种维度的研究。在第一部分中,我们通过识别神经字段方法的公共组件,包括不同的表示,架构,前向映射和泛化方法来专注于神经字段的技术。在第二部分中,我们专注于神经领域的应用在视觉计算中的不同问题,超越(例如,机器人,音频)。我们的评论显示了历史上和当前化身的视觉计算中已覆盖的主题的广度,展示了神经字段方法所带来的提高的质量,灵活性和能力。最后,我们展示了一个伴随着贡献本综述的生活版本,可以由社区不断更新。
translated by 谷歌翻译
接近周期性的模式(NPP)在人造场景中无处不在,由瓷砖图案组成,其外观差异是由照明,缺陷或设计元素引起的。良好的NPP表示对许多应用程序有用,包括图像完成,分割和几何重新映射。但是代表NPP是具有挑战性的,因为它需要保持全球一致性(瓷砖图案布局),同时保留局部变化(外观差异)。使用大型数据集或单图像优化斗争在一般场景上训练的方法以满足这些约束,而明确模型周期性的方法对周期性检测错误并不强大。为了应对这些挑战,我们使用基于坐标的MLP学习具有单图像优化的神经隐式表示。我们设计一个输入功能翘曲模块和周期性指导的补丁损失,以处理全球一致性和局部变化。为了进一步提高鲁棒性,我们引入了一个周期性建议模块,以在我们的管道中搜索和使用多个候选周期。我们在单个和多平面场景上展示了我们方法对500多个建筑物,架子,壁纸,地面和蒙德里安图案的有效性。
translated by 谷歌翻译
边界是人类和计算机视觉系统使用的主要视觉提示之一。边界检测的关键问题之一是标签表示,这通常会导致类不平衡,因此,较厚的边界需要稀疏的非差异后处理步骤。在本文中,我们将边界重新解释为1D表面,并制定一对一的向量变换功能,允许训练边界预测完全避免了类不平衡问题。具体而言,我们在任何点定义边界表示,因为单位向量指向最接近的边界表面。我们的问题表述可导致方向的估计以及边界的更丰富的上下文信息,如果需要,在训练时也可以使用零像素薄边界。我们的方法在训练损失中不使用超参数和推断时固定的稳定的高参数。我们提供有关向量变换表示的理论理由/讨论。我们使用标准体系结构评估了提出的损失方法,并显示了几个数据集上其他损失和表示的出色性能。代码可在https://github.com/edomel/boundaryvt上找到。
translated by 谷歌翻译
我们提出了明确结合频率和图像特征表示的神经网络层,并表明它们可以用作频率空间数据重建的多功能构建块。我们的工作是由MRI习得引起的挑战所激发的,该挑战是信号是所需图像的傅立叶变换。提出的联合学习方案既可以校正频率空间的天然伪像,又可以操纵图像空间表示,以重建网络各层的相干图像结构。这与图像重建的大多数当前深度学习方法形成鲜明对比,该方法分别处理频率和图像空间特征,并且通常在两个空间之一中仅运行。我们证明了联合卷积学习在各种任务中的优势,包括运动校正,denosing,从不足采样的采集中重建,以及对模拟和现实世界多层MRI数据的混合采样和运动校正。联合模型在所有任务和数据集中都始终如一地产生高质量的输出图像。当整合到具有物理启发的数据一致性约束的最终采样重建的情况下,将其集成到艺术风化的优化网络中时,提议的体系结构显着改善了优化景观,从而产生了减少训练时间的数量级。该结果表明,联合表示特别适合深度学习网络中的MRI信号。我们的代码和预算模型可在https://github.com/nalinimsingh/interlacer上公开获得。
translated by 谷歌翻译