Deep convolutional networks have become a popular tool for image generation and restoration. Generally, their excellent performance is imputed to their ability to learn realistic image priors from a large number of example images. In this paper, we show that, on the contrary, the structure of a generator network is sufficient to capture a great deal of low-level image statistics prior to any learning. In order to do so, we show that a randomly-initialized neural network can be used as a handcrafted prior with excellent results in standard inverse problems such as denoising, superresolution, and inpainting. Furthermore, the same prior can be used to invert deep neural representations to diagnose them, and to restore images based on flash-no flash input pairs.
translated by 谷歌翻译
深度图像先验表明,通过简单地优化它的参数来重建单个降级图像,可以训练具有合适架构的随机初始化网络以解决反向成像问题。但是,它受到了两个实际限制。首先,它仍然不清楚如何在网络架构选择之前控制。其次,培训需要Oracle停止标准,因为在优化期间,在达到最佳值后性能降低。为了解决这些挑战,我们引入频带对应度量以表征在之前的深图像的光谱偏压,其中低频图像信号比高频对应物更快且更好地学习。根据我们的观察,我们提出了防止最终性能下降和加速收敛的技术。我们介绍了Lipschitz受控的卷积层和高斯控制的上采样层,作为深度架构中使用的层的插件替代品。实验表明,随着这些变化,在优化期间,性能不会降低,从需要对Oracle停止标准的需求中脱离我们。我们进一步勾勒出停止标准以避免多余的计算。最后,我们表明我们的方法与各种去噪,去块,染色,超级分辨率和细节增强任务的当前方法相比获得了有利的结果。代码可用于\ url {https:/github.com/shizenglin/measure-and-control-spectraL-bias}。
translated by 谷歌翻译
插件播放(PNP)框架使得将高级图像deno的先验集成到优化算法中成为可能,以有效地解决通常以最大后验(MAP)估计问题为例的各种图像恢复任务。乘法乘数的交替方向方法(ADMM)和通过denoing(红色)算法的正则化是这类方法的两个示例,这些示例在图像恢复方面取得了突破。但是,尽管前一种方法仅适用于近端算法,但最近已经证明,当DeOisers缺乏Jacobian对称性时,没有任何正规化解释红色算法,这恰恰是最实际的DINOISERS的情况。据我们所知,没有任何方法来训练直接代表正规器梯度的网络,该网络可以直接用于基于插入梯度的算法中。我们表明,可以在共同训练相应的地图Denoiser的同时训练直接建模MAP正常化程序梯度的网络。我们在基于梯度的优化方法中使用该网络,并获得与其他通用插件方法相比,获得更好的结果。我们还表明,正规器可以用作展开梯度下降的预训练网络。最后,我们证明了由此产生的Denoiser允许更好地收敛插件ADMM。
translated by 谷歌翻译
Learning a good image prior is a long-term goal for image restoration and manipulation. While existing methods like deep image prior (DIP) capture low-level image statistics, there are still gaps toward an image prior that captures rich image semantics including color, spatial coherence, textures, and high-level concepts. This work presents an effective way to exploit the image prior captured by a generative adversarial network (GAN) trained on large-scale natural images. As shown in Fig. 1, the deep generative prior (DGP) provides compelling results to restore missing semantics, e.g., color, patch, resolution, of various degraded images. It also enables diverse image manipulation including random jittering, image morphing, and category transfer. Such highly flexible restoration and manipulation are made possible through relaxing the assumption of existing GAN-inversion methods, which tend to fix the generator. Notably, we allow the generator to be fine-tuned on-the-fly in a progressive manner regularized by feature distance obtained by the discriminator in GAN. We show that these easy-to-implement and practical changes help preserve the reconstruction to remain in the manifold of nature image, and thus lead to more precise and faithful reconstruction for real images. Code is available at https://github.com/XingangPan/deepgenerative-prior.
translated by 谷歌翻译
随着深度学习(DL)的出现,超分辨率(SR)也已成为一个蓬勃发展的研究领域。然而,尽管结果有希望,但该领域仍然面临需要进一步研究的挑战,例如,允许灵活地采样,更有效的损失功能和更好的评估指标。我们根据最近的进步来回顾SR的域,并检查最新模型,例如扩散(DDPM)和基于变压器的SR模型。我们对SR中使用的当代策略进行了批判性讨论,并确定了有前途但未开发的研究方向。我们通过纳入该领域的最新发展,例如不确定性驱动的损失,小波网络,神经体系结构搜索,新颖的归一化方法和最新评估技术来补充先前的调查。我们还为整章中的模型和方法提供了几种可视化,以促进对该领域趋势的全球理解。最终,这篇综述旨在帮助研究人员推动DL应用于SR的界限。
translated by 谷歌翻译
基于深度学习的高光谱图像(HSI)恢复方法因其出色的性能而广受欢迎,但每当任务更改的细节时,通常都需要昂贵的网络再培训。在本文中,我们建议使用有效的插入方法以统一的方法恢复HSI,该方法可以共同保留基于优化方法的灵活性,并利用深神经网络的强大表示能力。具体而言,我们首先开发了一个新的深HSI DeNoiser,利用了门控复发单元,短期和长期的跳过连接以及增强的噪声水平图,以更好地利用HSIS内丰富的空间光谱信息。因此,这导致在高斯和复杂的噪声设置下,在HSI DeNosing上的最新性能。然后,在处理各种HSI恢复任务之前,将提议的DeNoiser插入即插即用的框架中。通过对HSI超分辨率,压缩感测和内部进行的广泛实验,我们证明了我们的方法经常实现卓越的性能,这与每个任务上的最先进的竞争性或甚至更好任何特定任务的培训。
translated by 谷歌翻译
Single image super-resolution is the task of inferring a high-resolution image from a single low-resolution input. Traditionally, the performance of algorithms for this task is measured using pixel-wise reconstruction measures such as peak signal-to-noise ratio (PSNR) which have been shown to correlate poorly with the human perception of image quality. As a result, algorithms minimizing these metrics tend to produce over-smoothed images that lack highfrequency textures and do not look natural despite yielding high PSNR values.We propose a novel application of automated texture synthesis in combination with a perceptual loss focusing on creating realistic textures rather than optimizing for a pixelaccurate reproduction of ground truth images during training. By using feed-forward fully convolutional neural networks in an adversarial training setting, we achieve a significant boost in image quality at high magnification ratios. Extensive experiments on a number of datasets show the effectiveness of our approach, yielding state-of-the-art results in both quantitative and qualitative benchmarks.
translated by 谷歌翻译
本文提出了图像恢复的新变异推理框架和一个卷积神经网络(CNN)结构,该结构可以解决所提出的框架所描述的恢复问题。较早的基于CNN的图像恢复方法主要集中在网络体系结构设计或培训策略上,具有非盲方案,其中已知或假定降解模型。为了更接近现实世界的应用程序,CNN还接受了整个数据集的盲目培训,包括各种降解。然而,给定有多样化的图像的高质量图像的条件分布太复杂了,无法通过单个CNN学习。因此,也有一些方法可以提供其他先验信息来培训CNN。与以前的方法不同,我们更多地专注于基于贝叶斯观点以及如何重新重新重构目标的恢复目标。具体而言,我们的方法放松了原始的后推理问题,以更好地管理子问题,因此表现得像分裂和互动方案。结果,与以前的框架相比,提出的框架提高了几个恢复问题的性能。具体而言,我们的方法在高斯denoising,现实世界中的降噪,盲图超级分辨率和JPEG压缩伪像减少方面提供了最先进的性能。
translated by 谷歌翻译
The primary aim of single-image super-resolution is to construct a high-resolution (HR) image from a corresponding low-resolution (LR) input. In previous approaches, which have generally been supervised, the training objective typically measures a pixel-wise average distance between the super-resolved (SR) and HR images. Optimizing such metrics often leads to blurring, especially in high variance (detailed) regions. We propose an alternative formulation of the super-resolution problem based on creating realistic SR images that downscale correctly. We present a novel super-resolution algorithm addressing this problem, PULSE (Photo Upsampling via Latent Space Exploration), which generates high-resolution, realistic images at resolutions previously unseen in the literature. It accomplishes this in an entirely self-supervised fashion and is not confined to a specific degradation operator used during training, unlike previous methods (which require training on databases of LR-HR image pairs for supervised learning). Instead of starting with the LR image and slowly adding detail, PULSE traverses the high-resolution natural image manifold, searching for images that downscale to the original LR image. This is formalized through the "downscaling loss," which guides exploration through the latent space of a generative model. By leveraging properties of high-dimensional Gaussians, we restrict the search space to guarantee that our outputs are realistic. PULSE thereby generates super-resolved images that both are realistic and downscale correctly. We show extensive experimental results demonstrating the efficacy of our approach in the domain of face super-resolution (also known as face hallucination). We also present a discussion of the limitations and biases of the method as currently implemented with an accompanying model card with relevant metrics. Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously pos-sible.
translated by 谷歌翻译
经典图像恢复算法使用各种前瞻性,无论是明确的还是明确的。他们的前沿是手工设计的,它们的相应权重是启发式分配的。因此,深度学习方法通​​常会产生优异的图像恢复质量。然而,深度网络是能够诱导强烈且难以预测的幻觉。在学习图像时,网络隐含地学会联合忠于观察到的数据;然后是不可能的原始数据和下游的幻觉数据的分离。这限制了它们在图像恢复中的广泛采用。此外,通常是降解模型过度装备的受害者的幻觉部分。我们提出了一种具有解耦的网络先前的幻觉和数据保真度的方法。我们将我们的框架称为贝叶斯队的生成先前(BigPrior)的集成。我们的方法植根于贝叶斯框架中,并将其紧密连接到经典恢复方法。实际上,它可以被视为大型经典恢复算法的概括。我们使用网络反转来从生成网络中提取图像先前信息。我们表明,在图像着色,染色和去噪,我们的框架始终如一地提高了反演结果。我们的方法虽然部分依赖于生成网络反演的质量,具有竞争性的监督和任务特定的恢复方法。它还提供了一种额外的公制,其阐述了每像素的先前依赖程度相对于数据保真度。
translated by 谷歌翻译
由智能手机和中端相机捕获的照片的空间分辨率和动态范围有限,在饱和区域中未充满刺激的区域和颜色人工制品中的嘈杂响应。本文介绍了第一种方法(据我们所知),以重建高分辨率,高动态范围的颜色图像,这些颜色来自带有曝光括号的手持相机捕获的原始照相爆发。该方法使用图像形成的物理精确模型来结合迭代优化算法,用于求解相应的逆问题和学习的图像表示,以进行健壮的比对,并以前的自然图像。所提出的算法很快,与基于最新的学习图像恢复方法相比,内存需求较低,并且从合成但逼真的数据终止学习的特征。广泛的实验证明了其出色的性能,具有最多$ \ times 4 $的超分辨率因子在野外拍摄的带有手持相机的真实照片,以及对低光条件,噪音,摄像机摇动和中等物体运动的高度鲁棒性。
translated by 谷歌翻译
图像超分辨率(SR)是重要的图像处理方法之一,可改善计算机视野领域的图像分辨率。在过去的二十年中,在超级分辨率领域取得了重大进展,尤其是通过使用深度学习方法。这项调查是为了在深度学习的角度进行详细的调查,对单像超分辨率的最新进展进行详细的调查,同时还将告知图像超分辨率的初始经典方法。该调查将图像SR方法分类为四个类别,即经典方法,基于学习的方法,无监督学习的方法和特定领域的SR方法。我们还介绍了SR的问题,以提供有关图像质量指标,可用参考数据集和SR挑战的直觉。使用参考数据集评估基于深度学习的方法。一些审查的最先进的图像SR方法包括增强的深SR网络(EDSR),周期循环gan(Cincgan),多尺度残留网络(MSRN),Meta残留密度网络(META-RDN) ,反复反射网络(RBPN),二阶注意网络(SAN),SR反馈网络(SRFBN)和基于小波的残留注意网络(WRAN)。最后,这项调查以研究人员将解决SR的未来方向和趋势和开放问题的未来方向和趋势。
translated by 谷歌翻译
Deep neural networks provide unprecedented performance gains in many real world problems in signal and image processing. Despite these gains, future development and practical deployment of deep networks is hindered by their blackbox nature, i.e., lack of interpretability, and by the need for very large training sets. An emerging technique called algorithm unrolling or unfolding offers promise in eliminating these issues by providing a concrete and systematic connection between iterative algorithms that are used widely in signal processing and deep neural networks. Unrolling methods were first proposed to develop fast neural network approximations for sparse coding. More recently, this direction has attracted enormous attention and is rapidly growing both in theoretic investigations and practical applications. The growing popularity of unrolled deep networks is due in part to their potential in developing efficient, high-performance and yet interpretable network architectures from reasonable size training sets. In this article, we review algorithm unrolling for signal and image processing. We extensively cover popular techniques for algorithm unrolling in various domains of signal and image processing including imaging, vision and recognition, and speech processing. By reviewing previous works, we reveal the connections between iterative algorithms and neural networks and present recent theoretical results. Finally, we provide a discussion on current limitations of unrolling and suggest possible future research directions.
translated by 谷歌翻译
Despite the breakthroughs in accuracy and speed of single image super-resolution using faster and deeper convolutional neural networks, one central problem remains largely unsolved: how do we recover the finer texture details when we super-resolve at large upscaling factors? The behavior of optimization-based super-resolution methods is principally driven by the choice of the objective function. Recent work has largely focused on minimizing the mean squared reconstruction error. The resulting estimates have high peak signal-to-noise ratios, but they are often lacking high-frequency details and are perceptually unsatisfying in the sense that they fail to match the fidelity expected at the higher resolution. In this paper, we present SRGAN, a generative adversarial network (GAN) for image superresolution (SR). To our knowledge, it is the first framework capable of inferring photo-realistic natural images for 4× upscaling factors. To achieve this, we propose a perceptual loss function which consists of an adversarial loss and a content loss. The adversarial loss pushes our solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images. In addition, we use a content loss motivated by perceptual similarity instead of similarity in pixel space. Our deep residual network is able to recover photo-realistic textures from heavily downsampled images on public benchmarks. An extensive mean-opinion-score (MOS) test shows hugely significant gains in perceptual quality using SRGAN. The MOS scores obtained with SRGAN are closer to those of the original high-resolution images than to those obtained with any state-of-the-art method.
translated by 谷歌翻译
盲图修复(IR)是计算机视觉中常见但充满挑战的问题。基于经典模型的方法和最新的深度学习(DL)方法代表了有关此问题的两种不同方法,每种方法都有自己的优点和缺点。在本文中,我们提出了一种新颖的盲图恢复方法,旨在整合它们的两种优势。具体而言,我们为盲IR构建了一个普通的贝叶斯生成模型,该模型明确描绘了降解过程。在此提出的模型中,PICEL的非I.I.D。高斯分布用于适合图像噪声。它的灵活性比简单的I.I.D。在大多数常规方法中采用的高斯或拉普拉斯分布,以处理图像降解中包含的更复杂的噪声类型。为了解决该模型,我们设计了一个变异推理算法,其中所有预期的后验分布都被参数化为深神经网络,以提高其模型能力。值得注意的是,这种推论算法诱导统一的框架共同处理退化估计和图像恢复的任务。此外,利用了前一种任务中估计的降解信息来指导后一种红外过程。对两项典型的盲型IR任务进行实验,即图像降解和超分辨率,表明所提出的方法比当前最新的方法实现了卓越的性能。
translated by 谷歌翻译
Face Restoration (FR) aims to restore High-Quality (HQ) faces from Low-Quality (LQ) input images, which is a domain-specific image restoration problem in the low-level computer vision area. The early face restoration methods mainly use statistic priors and degradation models, which are difficult to meet the requirements of real-world applications in practice. In recent years, face restoration has witnessed great progress after stepping into the deep learning era. However, there are few works to study deep learning-based face restoration methods systematically. Thus, this paper comprehensively surveys recent advances in deep learning techniques for face restoration. Specifically, we first summarize different problem formulations and analyze the characteristic of the face image. Second, we discuss the challenges of face restoration. Concerning these challenges, we present a comprehensive review of existing FR methods, including prior based methods and deep learning-based methods. Then, we explore developed techniques in the task of FR covering network architectures, loss functions, and benchmark datasets. We also conduct a systematic benchmark evaluation on representative methods. Finally, we discuss future directions, including network designs, metrics, benchmark datasets, applications,etc. We also provide an open-source repository for all the discussed methods, which is available at https://github.com/TaoWangzj/Awesome-Face-Restoration.
translated by 谷歌翻译
图像恢复仍然是图像处理中有挑战性的任务。许多方法解决这个问题,通常通过最小化非平滑惩罚的共轨似然函数来解决。虽然解决方案很容易以理论保证来解释,但其估计依赖于可能需要时间的优化过程。考虑到图像分类和分割深度学习的研究努力,这类方法提供了一个严重的替代方案来执行图像恢复,但要挑战解决逆问题。在这项工作中,我们设计了一个名为Deeppdnet的深网络,从原始双近迭代构建,与之前的分析有关的标准惩罚可能性,允许我们利用两个世界。我们用固定图层为深度网络进行重构Condat-Vu原始 - 双混梯度(PDHG)算法的特定实例。学习的参数均为PDHG算法阶梯大小和惩罚中涉及的分析线性运算符(包括正则化参数)。允许这些参数从层变为另一个参数。提出了两种不同的学习策略:提出了“全学习”和“部分学习”,第一个是数值最有效的,而第二个是依赖于标准约束确保标准PDHG迭代中的收敛。此外,研究了全局和局部稀疏分析,以寻求更好的特征表示。我们将所提出的方法应用于MNIST和BSD68数据集上的图像恢复以及BSD100和SET14数据集的单个图像超分辨率。广泛的结果表明,建议的DeepPDNET在MNIST和更复杂的BSD68,BSD100和SET14数据集中展示了卓越的性能,用于图像恢复和单图像超分辨率任务。
translated by 谷歌翻译
最近的作品表明,卷积神经网络(CNN)架构具有朝向较低频率的光谱偏压,这已经针对在之前(DIP)框架中的深度图像中的各种图像恢复任务而被利用。归纳偏置的益处网络施加在DIP框架中取决于架构。因此,研究人员研究了如何自动化搜索来确定最佳性能的模型。然而,常见的神经结构搜索(NAS)技术是资源和时间密集的。此外,最佳性能的模型是针对整个图像的整个数据集而不是为每个图像独立地确定,这将是非常昂贵的。在这项工作中,我们首先表明DIP框架中的最佳神经结构是依赖于图像的。然后利用这种洞察力,我们提出了一种特定于DIP框架的图像特定的NAS策略,其需要比典型的NAS方法大得多,有效地实现特定于图像的NA。对于给定的图像,噪声被馈送到大量未训练的CNN,并且它们的输出的功率谱密度(PSD)与使用各种度量的损坏图像进行比较。基于此,选择并培训了一个小型的图像特定架构,以重建损坏的图像。在这种队列中,选择重建最接近重建图像的平均值的模型作为最终模型。我们向拟议的战略证明(1)证明其在NAS数据集上的表现效果,该数据集包括来自特定搜索空间(2)的500多种模型,在特定的搜索空间(2)上进行了广泛的图像去噪,染色和超级分辨率任务。我们的实验表明,图像特定度量可以将搜索空间减少到小型模型队列,其中最佳模型优于电流NAS用于图像恢复的方法。
translated by 谷歌翻译
我们表明,诸如Stylegan和Biggan之类的预训练的生成对抗网络(GAN)可以用作潜在银行,以提高图像超分辨率的性能。尽管大多数现有面向感知的方法试图通过以对抗性损失学习来产生现实的产出,但我们的方法,即生成的潜在银行(GLEAN),通过直接利用预先训练的gan封装的丰富而多样的先验来超越现有实践。但是,与需要在运行时需要昂贵的图像特定优化的普遍的GAN反演方法不同,我们的方法只需要单个前向通行证才能修复。可以轻松地将Glean合并到具有多分辨率Skip连接的简单编码器银行decoder架构中。采用来自不同生成模型的先验,可以将收集到各种类别(例如人的面孔,猫,建筑物和汽车)。我们进一步提出了一个轻巧的Glean,名为Lightglean,该版本仅保留Glean中的关键组成部分。值得注意的是,Lightglean仅由21%的参数和35%的拖鞋组成,同时达到可比的图像质量。我们将方法扩展到不同的任务,包括图像着色和盲图恢复,广泛的实验表明,与现有方法相比,我们提出的模型表现出色。代码和模型可在https://github.com/open-mmlab/mmediting上找到。
translated by 谷歌翻译
传统摄像机测量图像强度。相比之下,事件相机以异步测量每像素的时间强度变化。恢复事件的强度是一个流行的研究主题,因为重建的图像继承了高动态范围(HDR)和事件的高速属性;因此,它们可以在许多机器人视觉应用中使用并生成慢动作HDR视频。然而,最先进的方法通过训练映射到图像经常性神经网络(RNN)来解决这个问题,这缺乏可解释性并且难以调整。在这项工作中,我们首次展示运动和强度估计的联合问题导致我们以模拟基于事件的图像重建作为可以解决的线性逆问题,而无需训练图像重建RNN。相反,基于古典和学习的图像前导者可以用于解决问题并从重建的图像中删除伪影。实验表明,尽管仅使用来自短时间间隔(即,没有复发连接),但是,尽管只使用来自短时间间隔的数据,所提出的方法会产生视觉质量的图像。我们的方法还可用于提高首先估计图像Laplacian的方法重建的图像的质量;在这里,我们的方法可以被解释为由图像前提引导的泊松重建。
translated by 谷歌翻译