深度图像先验表明,通过简单地优化它的参数来重建单个降级图像,可以训练具有合适架构的随机初始化网络以解决反向成像问题。但是,它受到了两个实际限制。首先,它仍然不清楚如何在网络架构选择之前控制。其次,培训需要Oracle停止标准,因为在优化期间,在达到最佳值后性能降低。为了解决这些挑战,我们引入频带对应度量以表征在之前的深图像的光谱偏压,其中低频图像信号比高频对应物更快且更好地学习。根据我们的观察,我们提出了防止最终性能下降和加速收敛的技术。我们介绍了Lipschitz受控的卷积层和高斯控制的上采样层,作为深度架构中使用的层的插件替代品。实验表明,随着这些变化,在优化期间,性能不会降低,从需要对Oracle停止标准的需求中脱离我们。我们进一步勾勒出停止标准以避免多余的计算。最后,我们表明我们的方法与各种去噪,去块,染色,超级分辨率和细节增强任务的当前方法相比获得了有利的结果。代码可用于\ url {https:/github.com/shizenglin/measure-and-control-spectraL-bias}。
translated by 谷歌翻译
Deep convolutional networks have become a popular tool for image generation and restoration. Generally, their excellent performance is imputed to their ability to learn realistic image priors from a large number of example images. In this paper, we show that, on the contrary, the structure of a generator network is sufficient to capture a great deal of low-level image statistics prior to any learning. In order to do so, we show that a randomly-initialized neural network can be used as a handcrafted prior with excellent results in standard inverse problems such as denoising, superresolution, and inpainting. Furthermore, the same prior can be used to invert deep neural representations to diagnose them, and to restore images based on flash-no flash input pairs.
translated by 谷歌翻译
基于深度学习的高光谱图像(HSI)恢复方法因其出色的性能而广受欢迎,但每当任务更改的细节时,通常都需要昂贵的网络再培训。在本文中,我们建议使用有效的插入方法以统一的方法恢复HSI,该方法可以共同保留基于优化方法的灵活性,并利用深神经网络的强大表示能力。具体而言,我们首先开发了一个新的深HSI DeNoiser,利用了门控复发单元,短期和长期的跳过连接以及增强的噪声水平图,以更好地利用HSIS内丰富的空间光谱信息。因此,这导致在高斯和复杂的噪声设置下,在HSI DeNosing上的最新性能。然后,在处理各种HSI恢复任务之前,将提议的DeNoiser插入即插即用的框架中。通过对HSI超分辨率,压缩感测和内部进行的广泛实验,我们证明了我们的方法经常实现卓越的性能,这与每个任务上的最先进的竞争性或甚至更好任何特定任务的培训。
translated by 谷歌翻译
Deconvolution is a widely used strategy to mitigate the blurring and noisy degradation of hyperspectral images~(HSI) generated by the acquisition devices. This issue is usually addressed by solving an ill-posed inverse problem. While investigating proper image priors can enhance the deconvolution performance, it is not trivial to handcraft a powerful regularizer and to set the regularization parameters. To address these issues, in this paper we introduce a tuning-free Plug-and-Play (PnP) algorithm for HSI deconvolution. Specifically, we use the alternating direction method of multipliers (ADMM) to decompose the optimization problem into two iterative sub-problems. A flexible blind 3D denoising network (B3DDN) is designed to learn deep priors and to solve the denoising sub-problem with different noise levels. A measure of 3D residual whiteness is then investigated to adjust the penalty parameters when solving the quadratic sub-problems, as well as a stopping criterion. Experimental results on both simulated and real-world data with ground-truth demonstrate the superiority of the proposed method.
translated by 谷歌翻译
在计算机视觉和邻近字段中,已广泛研究了盲图片脱毛(BID)。投标的现代方法可以分为两类:使用统计推断和数值优化处理单个实例的单个实体方法,以及数据驱动的方法,这些方法可以直接训练深度学习模型来直接删除未来实例。数据驱动的方法可以摆脱得出准确的模型模型的困难,但从根本上受到培训数据的多样性和质量的限制 - 收集足够表达和现实的培训数据是一个坚定的挑战。在本文中,我们专注于保持竞争力和必不可少的单一稳定方法。但是,大多数此类方法没有规定如何处理未知内核大小和实质性噪音,从而排除了实际部署。实际上,我们表明,当核大小被明确指定时,几种最新的(SOTA)单位方法是不稳定的,并且/或噪声水平很高。从积极的一面来看,我们提出了一种实用的出价方法,该方法对这两者都是稳定的,这是同类的。我们的方法建立在最新的思想,即通过整合物理模型和结构深度神经网络而没有额外的培训数据来解决反问题。我们引入了几种关键修改以实现所需的稳定性。与SOTA单位结构以及数据驱动的方法相比,对标准合成数据集以及现实世界中的NTIRE2020和REALBLUR数据集进行了广泛的经验测试。我们方法的代码可在:\ url {https://github.com/sun-unm/blind-image-deblurring}中获得。
translated by 谷歌翻译
近年来,在诸如denoing,压缩感应,介入和超分辨率等反问题中使用深度学习方法的使用取得了重大进展。尽管这种作品主要是由实践算法和实验驱动的,但它也引起了各种有趣的理论问题。在本文中,我们调查了这一作品中一些突出的理论发展,尤其是生成先验,未经训练的神经网络先验和展开算法。除了总结这些主题中的现有结果外,我们还强调了一些持续的挑战和开放问题。
translated by 谷歌翻译
最近的作品表明,卷积神经网络(CNN)架构具有朝向较低频率的光谱偏压,这已经针对在之前(DIP)框架中的深度图像中的各种图像恢复任务而被利用。归纳偏置的益处网络施加在DIP框架中取决于架构。因此,研究人员研究了如何自动化搜索来确定最佳性能的模型。然而,常见的神经结构搜索(NAS)技术是资源和时间密集的。此外,最佳性能的模型是针对整个图像的整个数据集而不是为每个图像独立地确定,这将是非常昂贵的。在这项工作中,我们首先表明DIP框架中的最佳神经结构是依赖于图像的。然后利用这种洞察力,我们提出了一种特定于DIP框架的图像特定的NAS策略,其需要比典型的NAS方法大得多,有效地实现特定于图像的NA。对于给定的图像,噪声被馈送到大量未训练的CNN,并且它们的输出的功率谱密度(PSD)与使用各种度量的损坏图像进行比较。基于此,选择并培训了一个小型的图像特定架构,以重建损坏的图像。在这种队列中,选择重建最接近重建图像的平均值的模型作为最终模型。我们向拟议的战略证明(1)证明其在NAS数据集上的表现效果,该数据集包括来自特定搜索空间(2)的500多种模型,在特定的搜索空间(2)上进行了广泛的图像去噪,染色和超级分辨率任务。我们的实验表明,图像特定度量可以将搜索空间减少到小型模型队列,其中最佳模型优于电流NAS用于图像恢复的方法。
translated by 谷歌翻译
尽管深度学习使图像介绍方面取得了巨大的飞跃,但当前的方法通常无法综合现实的高频细节。在本文中,我们建议将超分辨率应用于粗糙的重建输出,以高分辨率进行精炼,然后将输出降低到原始分辨率。通过将高分辨率图像引入改进网络,我们的框架能够重建更多的细节,这些细节通常由于光谱偏置而被平滑 - 神经网络倾向于比高频更好地重建低频。为了协助培训大型高度孔洞的改进网络,我们提出了一种渐进的学习技术,其中缺失区域的大小随着培训的进行而增加。我们的缩放,完善和缩放策略,结合了高分辨率的监督和渐进学习,构成了一种框架 - 不合时宜的方法,用于增强高频细节,可应用于任何基于CNN的涂层方法。我们提供定性和定量评估以及消融分析,以显示我们方法的有效性。这种看似简单但功能强大的方法优于最先进的介绍方法。我们的代码可在https://github.com/google/zoom-to-inpaint中找到
translated by 谷歌翻译
随着深度学习(DL)的出现,超分辨率(SR)也已成为一个蓬勃发展的研究领域。然而,尽管结果有希望,但该领域仍然面临需要进一步研究的挑战,例如,允许灵活地采样,更有效的损失功能和更好的评估指标。我们根据最近的进步来回顾SR的域,并检查最新模型,例如扩散(DDPM)和基于变压器的SR模型。我们对SR中使用的当代策略进行了批判性讨论,并确定了有前途但未开发的研究方向。我们通过纳入该领域的最新发展,例如不确定性驱动的损失,小波网络,神经体系结构搜索,新颖的归一化方法和最新评估技术来补充先前的调查。我们还为整章中的模型和方法提供了几种可视化,以促进对该领域趋势的全球理解。最终,这篇综述旨在帮助研究人员推动DL应用于SR的界限。
translated by 谷歌翻译
高光谱图像(HSI)没有额外辅助图像的超分辨率仍然是由于其高维光谱图案的恒定挑战,其中学习有效的空间和光谱表示是基本问题。最近,隐式的神经表示(INR)正在进行进步,作为新颖且有效的代表,特别是在重建任务中。因此,在这项工作中,我们提出了一种基于INR的新颖的HSI重建模型,其通过将空间坐标映射到其对应的光谱辐射值值的连续函数来表示HSI。特别地,作为INR的特定实现,参数模型的参数是通过使用卷积网络在特征提取的超通知来预测的。它使连续功能以内容感知方式将空间坐标映射到像素值。此外,周期性空间编码与重建过程深度集成,这使得我们的模型能够恢复更高的频率细节。为了验证我们模型的功效,我们在三个HSI数据集(洞穴,NUS和NTIRE2018)上进行实验。实验结果表明,与最先进的方法相比,该建议的模型可以实现竞争重建性能。此外,我们提供了对我们模型各个组件的效果的消融研究。我们希望本文可以服务器作为未来研究的效率参考。
translated by 谷歌翻译
插件播放(PNP)框架使得将高级图像deno的先验集成到优化算法中成为可能,以有效地解决通常以最大后验(MAP)估计问题为例的各种图像恢复任务。乘法乘数的交替方向方法(ADMM)和通过denoing(红色)算法的正则化是这类方法的两个示例,这些示例在图像恢复方面取得了突破。但是,尽管前一种方法仅适用于近端算法,但最近已经证明,当DeOisers缺乏Jacobian对称性时,没有任何正规化解释红色算法,这恰恰是最实际的DINOISERS的情况。据我们所知,没有任何方法来训练直接代表正规器梯度的网络,该网络可以直接用于基于插入梯度的算法中。我们表明,可以在共同训练相应的地图Denoiser的同时训练直接建模MAP正常化程序梯度的网络。我们在基于梯度的优化方法中使用该网络,并获得与其他通用插件方法相比,获得更好的结果。我们还表明,正规器可以用作展开梯度下降的预训练网络。最后,我们证明了由此产生的Denoiser允许更好地收敛插件ADMM。
translated by 谷歌翻译
神经隐式功能对于数据表示非常有效。但是,如果输入数据具有许多细节或含有低频和高频带宽,则神经网络学到的隐式功能通常包括意外的噪声或失去细节。在保留细尺度内容的同时,删除工件具有挑战性,通常会出现过度平滑或嘈杂的问题。为了解决这一难题,我们提出了一个新框架(FINN),该框架(FINN)将过滤模块集成到MLP中以执行数据重建,同时适应包含不同频率的区域。过滤模块的平滑操作员作用于网络的中间结果,鼓励结果是平滑的,并且恢复的操作员将高频带到区域过于光滑。两个反活性操作员在所有MLP层中连续播放,以适应重建。我们证明了Finn在几个任务上的优势,并与最新方法相比,展示了显着改善。此外,Finn在收敛速度和网络稳定性方面还能产生更好的性能。
translated by 谷歌翻译
图像超分辨率(SR)是重要的图像处理方法之一,可改善计算机视野领域的图像分辨率。在过去的二十年中,在超级分辨率领域取得了重大进展,尤其是通过使用深度学习方法。这项调查是为了在深度学习的角度进行详细的调查,对单像超分辨率的最新进展进行详细的调查,同时还将告知图像超分辨率的初始经典方法。该调查将图像SR方法分类为四个类别,即经典方法,基于学习的方法,无监督学习的方法和特定领域的SR方法。我们还介绍了SR的问题,以提供有关图像质量指标,可用参考数据集和SR挑战的直觉。使用参考数据集评估基于深度学习的方法。一些审查的最先进的图像SR方法包括增强的深SR网络(EDSR),周期循环gan(Cincgan),多尺度残留网络(MSRN),Meta残留密度网络(META-RDN) ,反复反射网络(RBPN),二阶注意网络(SAN),SR反馈网络(SRFBN)和基于小波的残留注意网络(WRAN)。最后,这项调查以研究人员将解决SR的未来方向和趋势和开放问题的未来方向和趋势。
translated by 谷歌翻译
无监督的深度学习最近证明了生产高质量样本的希望。尽管它具有促进图像着色任务的巨大潜力,但由于数据歧管和模型能力的高维度,性能受到限制。这项研究提出了一种新的方案,该方案利用小波域中的基于得分的生成模型来解决这些问题。通过利用通过小波变换来利用多尺度和多渠道表示,该模型可以共同有效地从堆叠的粗糙小波系数组件中了解较富裕的先验。该策略还降低了原始歧管的维度,并减轻了维度的诅咒,这对估计和采样有益。此外,设计了小波域中的双重一致性项,即数据一致性和结构一致性,以更好地利用着色任务。具体而言,在训练阶段,一组由小波系数组成的多通道张量被用作训练网络以denoising得分匹配的输入。在推论阶段,样品是通过具有数据和结构一致性的退火Langevin动力学迭代生成的。实验证明了所提出的方法在发电和着色质量方面的显着改善,尤其是在着色鲁棒性和多样性方面。
translated by 谷歌翻译
现实世界图像Denoising是一个实用的图像恢复问题,旨在从野外嘈杂的输入中获取干净的图像。最近,Vision Transformer(VIT)表现出强大的捕获远程依赖性的能力,许多研究人员试图将VIT应用于图像DeNosing任务。但是,现实世界的图像是一个孤立的框架,它使VIT构建了内部贴片的远程依赖性,该依赖性将图像分为贴片并混乱噪声模式和梯度连续性。在本文中,我们建议通过使用连续的小波滑动转换器来解决此问题,该小波滑动转换器在现实世界中构建频率对应关系,称为dnswin。具体而言,我们首先使用CNN编码器从嘈杂的输入图像中提取底部功能。 DNSWIN的关键是将高频和低频信息与功能和构建频率依赖性分开。为此,我们提出了小波滑动窗口变压器,该变压器利用离散的小波变换,自我注意力和逆离散小波变换来提取深度特征。最后,我们使用CNN解码器将深度特征重建为DeNo的图像。对现实世界的基准测试的定量和定性评估都表明,拟议的DNSWIN对最新方法的表现良好。
translated by 谷歌翻译
Spatially varying spectral modulation can be implemented using a liquid crystal spatial light modulator (SLM) since it provides an array of liquid crystal cells, each of which can be purposed to act as a programmable spectral filter array. However, such an optical setup suffers from strong optical aberrations due to the unintended phase modulation, precluding spectral modulation at high spatial resolutions. In this work, we propose a novel computational approach for the practical implementation of phase SLMs for implementing spatially varying spectral filters. We provide a careful and systematic analysis of the aberrations arising out of phase SLMs for the purposes of spatially varying spectral modulation. The analysis naturally leads us to a set of "good patterns" that minimize the optical aberrations. We then train a deep network that overcomes any residual aberrations, thereby achieving ideal spectral modulation at high spatial resolution. We show a number of unique operating points with our prototype including dynamic spectral filtering, material classification, and single- and multi-image hyperspectral imaging.
translated by 谷歌翻译
Discriminative model learning for image denoising has been recently attracting considerable attentions due to its favorable denoising performance. In this paper, we take one step forward by investigating the construction of feed-forward denoising convolutional neural networks (DnCNNs) to embrace the progress in very deep architecture, learning algorithm, and regularization method into image denoising. Specifically, residual learning and batch normalization are utilized to speed up the training process as well as boost the denoising performance. Different from the existing discriminative denoising models which usually train a specific model for additive white Gaussian noise (AWGN) at a certain noise level, our DnCNN model is able to handle Gaussian denoising with unknown noise level (i.e., blind Gaussian denoising). With the residual learning strategy, DnCNN implicitly removes the latent clean image in the hidden layers. This property motivates us to train a single DnCNN model to tackle with several general image denoising tasks such as Gaussian denoising, single image super-resolution and JPEG image deblocking. Our extensive experiments demonstrate that our DnCNN model can not only exhibit high effectiveness in several general image denoising tasks, but also be efficiently implemented by benefiting from GPU computing.
translated by 谷歌翻译
Model-based optimization methods and discriminative learning methods have been the two dominant strategies for solving various inverse problems in low-level vision. Typically, those two kinds of methods have their respective merits and drawbacks, e.g., model-based optimization methods are flexible for handling different inverse problems but are usually time-consuming with sophisticated priors for the purpose of good performance; in the meanwhile, discriminative learning methods have fast testing speed but their application range is greatly restricted by the specialized task. Recent works have revealed that, with the aid of variable splitting techniques, denoiser prior can be plugged in as a modular part of model-based optimization methods to solve other inverse problems (e.g., deblurring). Such an integration induces considerable advantage when the denoiser is obtained via discriminative learning. However, the study of integration with fast discriminative denoiser prior is still lacking. To this end, this paper aims to train a set of fast and effective CNN (convolutional neural network) denoisers and integrate them into model-based optimization method to solve other inverse problems. Experimental results demonstrate that the learned set of denoisers not only achieve promising Gaussian denoising results but also can be used as prior to deliver good performance for various low-level vision applications.
translated by 谷歌翻译
该论文根据近年来提出的基于经典定理和最先进的方法来分析图像过度的挑战性问题。通过光谱分析,我们从数学上显示了光谱正则化方法的有效性,并指出光谱滤波结果与正则化优化目标的解决方案之间的联系。对于诸如Image Deblurring之类的不适性问题,优化目标包含一个正则化项(也称为正则化功能),该项将我们的先验知识编码为解决方案。我们使用最大后验估计的想法来演示如何通过手工制作正规化术语。然后,我们指出了这种基于正则化方法的局限性,并介入基于神经网络的方法。基于Wasserstein生成对抗模型的想法,我们可以训练CNN学习正则化功能。这种数据驱动的方法能够捕获复杂性,这可能在分析上不可调节。此外,近年来,随着体系结构的改善,由于观察到模糊的观察,该网络已经能够近似于地面真相的图像。生成对抗网络(GAN)在此图像到图像翻译的想法上工作。我们分析了Orest Kupyn等人提出的DeBlurgan-V2方法。 [14] 2019年基于数值测试。并且,根据实验结果和我们的知识,我们提出了一些改进此方法的建议。
translated by 谷歌翻译
为了解决高光谱图像超分辨率(HSISR)的不良问题,通常方法是使用高光谱图像(HSIS)的先前信息作为正则化术语来限制目标函数。使用手工制作前沿的基于模型的方法无法完全表征HSI的性质。基于学习的方法通常使用卷积神经网络(CNN)来学习HSI的隐式前导者。然而,CNN的学习能力是有限的,它仅考虑HSI的空间特性并忽略光谱特性,并且卷积对远程依赖性建模无效。还有很多改进的空间。在本文中,我们提出了一种新颖的HSISR方法,该方法使用变压器而不是CNN来学习HSI之前。具体地,我们首先使用近端梯度算法来解决HSISR模型,然后使用展开网络来模拟迭代解决方案过程。变压器的自我注意层使其具有空间全局互动的能力。此外,我们在变压器层后面添加3D-CNN,以更好地探索HSIS的时空相关性。两个广泛使用的HSI数据集和实际数据集的定量和视觉结果证明,与所有主流算法相比,所提出的方法实现了相当大的增益,包括最竞争力的传统方法和最近提出的基于深度学习的方法。
translated by 谷歌翻译