Superpixels在众多计算机视觉任务中用作强大的预处理工具。通过使用Superpixel表示,图像基元的数量可以大大降低倍数。随着近年来深度学习的兴起,少数作品试图将深受学习的特征/图饲养成现有的经典超像素技术。然而,他们都没有能够在近乎实时生产超像素,这对超像素在实践中适用性至关重要。在这项工作中,我们提出了一个基于图形的基于图形的Superpixel分割框架。在第一阶段,我们介绍了一种高效的深度亲和学习(DAL)网络,通过聚合多尺度信息来学习成对像素亲和力。在第二阶段,我们提出了一种称为分层熵速率分割(HERS)的高效超像素方法。使用来自第一阶段的学习亲和力,HERS构建了一个分层树结构,可以瞬间产生任何数量的高度自适应超像素。我们通过视觉和数值实验证明,我们的方法的有效性和效率与各种最先进的超像素方法相比。
translated by 谷歌翻译
晶体中砂岩的晶粒分割从其周围基质/水泥划分薄片是计算机辅助矿物识别和砂岩分类的主要步骤。砂岩的显微图像含有许多矿物颗粒及其周围的基质/水泥。相邻谷物和基质之间的区别通常是模糊的,使晶粒分割困难。文献中存在各种解决方案来处理这些问题;然而,他们对砂岩岩画的不同模式并不强大。在本文中,我们将谷物分割制定为像素 - 明智的两类(即谷物和背景)语义分割任务。我们开发一个基于深度学习的端到端培训框架,名为Deep语义粒度分割网络(DSGSN),数据驱动方法,提供通用解决方案。根据作者的知识,这是探索深度神经网络来解决谷物分割问题的第一个工作。对微观图像的广泛实验强调我们的方法比具有更多参数的各种分段架构获得更好的分割精度。
translated by 谷歌翻译
Recent progress on salient object detection is substantial, benefiting mostly from the explosive development of Convolutional Neural Networks (CNNs). Semantic segmentation and salient object detection algorithms developed lately have been mostly based on Fully Convolutional Neural Networks (FCNs). There is still a large room for improvement over the generic FCN models that do not explicitly deal with the scale-space problem. Holistically-Nested Edge Detector (HED) provides a skip-layer structure with deep supervision for edge and boundary detection, but the performance gain of HED on saliency detection is not obvious. In this paper, we propose a new salient object detection method by introducing short connections to the skip-layer structures within the HED architecture. Our framework takes full advantage of multi-level and multi-scale features extracted from FCNs, providing more advanced representations at each layer, a property that is critically needed to perform segment detection. Our method produces state-of-theart results on 5 widely tested salient object detection benchmarks, with advantages in terms of efficiency (0.08 seconds per image), effectiveness, and simplicity over the existing algorithms. Beyond that, we conduct an exhaustive analysis on the role of training data on performance. Our experimental results provide a more reasonable and powerful training set for future research and fair comparisons.
translated by 谷歌翻译
In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7% mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.
translated by 谷歌翻译
尽管近期基于深度学习的语义细分,但远程感测图像的自动建筑检测仍然是一个具有挑战性的问题,由于全球建筑物的出现巨大变化。误差主要发生在构建足迹的边界,阴影区域,以及检测外表面具有与周围区域非常相似的反射率特性的建筑物。为了克服这些问题,我们提出了一种生成的对抗基于网络的基于网络的分割框架,其具有嵌入在发电机中的不确定性关注单元和改进模块。由边缘和反向关注单元组成的细化模块,旨在精炼预测的建筑地图。边缘注意力增强了边界特征,以估计更高的精度,并且反向关注允许网络探索先前估计区域中缺少的功能。不确定性关注单元有助于网络解决分类中的不确定性。作为我们方法的权力的衡量标准,截至2021年12月4日,它在Deepglobe公共领导板上的第二名,尽管我们的方法的主要重点 - 建筑边缘 - 并不完全对齐用于排行榜排名的指标。 DeepGlobe充满挑战数据集的整体F1分数为0.745。我们还报告了对挑战的Inria验证数据集的最佳成绩,我们的网络实现了81.28%的总体验证,总体准确性为97.03%。沿着同一条线,对于官方Inria测试数据集,我们的网络总体上得分77.86%和96.41%,而且准确性。
translated by 谷歌翻译
We develop a new edge detection algorithm that addresses two important issues in this long-standing vision problem: (1) holistic image training and prediction; and (2) multi-scale and multi-level feature learning. Our proposed method, holistically-nested edge detection (HED), performs image-to-image prediction by means of a deep learning model that leverages fully convolutional neural networks and deeply-supervised nets. HED automatically learns rich hierarchical representations (guided by deep supervision on side responses) that are important in order to resolve the challenging ambiguity in edge and object boundary detection.We significantly advance the state-of-the-art on the BSD500 dataset (ODS F-score of .782) and the NYU Depth dataset (ODS F-score of .746), and do so with an improved speed (0.4s per image) that is orders of magnitude faster than some recent CNN-based edge detection algorithms.
translated by 谷歌翻译
捕获图像的全局拓扑对于提出对其域的准确分割至关重要。但是,大多数现有的分割方法都不能保留给定输入的初始拓扑,这对许多下游基于对象的任务有害。对于大多数在本地尺度上工作的深度学习模型来说,这是更真实的。在本文中,我们提出了一种新的拓扑深度图像分割方法,该方法依赖于新的泄漏损失:Pathloss。我们的方法是Baloss [1]的扩展,其中我们希望改进泄漏检测,以更好地恢复图像分割的接近度。这种损失使我们能够正确定位并修复预测中可能发生的关键点(边界中的泄漏),并基于最短路径搜索算法。这样,损失最小化仅在必要时才能强制连接,并最终提供了图像中对象边界的良好定位。此外,根据我们的研究,与无需使用拓扑损失的方法相比,我们的Pathloss学会了保持更强的细长结构。通过我们的拓扑损失函数培训,我们的方法在两个代表性数据集上优于最先进的拓扑感知方法:电子显微镜和历史图。
translated by 谷歌翻译
Deep Convolutional Neural Networks have been adopted for salient object detection and achieved the state-of-the-art performance. Most of the previous works however focus on region accuracy but not on the boundary quality. In this paper, we propose a predict-refine architecture, BASNet, and a new hybrid loss for Boundary-Aware Salient object detection. Specifically, the architecture is composed of a densely supervised Encoder-Decoder network and a residual refinement module, which are respectively in charge of saliency prediction and saliency map refinement. The hybrid loss guides the network to learn the transformation between the input image and the ground truth in a three-level hierarchy -pixel-, patch-and map-level -by fusing Binary Cross Entropy (BCE), Structural SIMilarity (SSIM) and Intersectionover-Union (IoU) losses. Equipped with the hybrid loss, the proposed predict-refine architecture is able to effectively segment the salient object regions and accurately predict the fine structures with clear boundaries. Experimental results on six public datasets show that our method outperforms the state-of-the-art methods both in terms of regional and boundary evaluation measures. Our method runs at over 25 fps on a single GPU. The code is available at: https://github.com/NathanUA/BASNet.
translated by 谷歌翻译
We present a novel and practical deep fully convolutional neural network architecture for semantic pixel-wise segmentation termed SegNet. This core trainable segmentation engine consists of an encoder network, a corresponding decoder network followed by a pixel-wise classification layer. The architecture of the encoder network is topologically identical to the 13 convolutional layers in the VGG16 network [1]. The role of the decoder network is to map the low resolution encoder feature maps to full input resolution feature maps for pixel-wise classification. The novelty of SegNet lies is in the manner in which the decoder upsamples its lower resolution input feature map(s). Specifically, the decoder uses pooling indices computed in the max-pooling step of the corresponding encoder to perform non-linear upsampling. This eliminates the need for learning to upsample. The upsampled maps are sparse and are then convolved with trainable filters to produce dense feature maps. We compare our proposed architecture with the widely adopted FCN [2] and also with the well known DeepLab-LargeFOV [3], DeconvNet [4] architectures. This comparison reveals the memory versus accuracy trade-off involved in achieving good segmentation performance. SegNet was primarily motivated by scene understanding applications. Hence, it is designed to be efficient both in terms of memory and computational time during inference. It is also significantly smaller in the number of trainable parameters than other competing architectures and can be trained end-to-end using stochastic gradient descent. We also performed a controlled benchmark of SegNet and other architectures on both road scenes and SUN RGB-D indoor scene segmentation tasks. These quantitative assessments show that SegNet provides good performance with competitive inference time and most efficient inference memory-wise as compared to other architectures. We also provide a Caffe implementation of SegNet and a web demo at http://mi.eng.cam.ac.uk/projects/segnet/.
translated by 谷歌翻译
引导过滤器是计算机视觉和计算机图形中的基本工具,旨在将结构信息从引导图像传输到目标图像。大多数现有方法构造来自指导本身的滤波器内核,而不考虑指导和目标之间的相互依赖性。然而,由于两种图像中通常存在显着不同的边沿,只需将引导的所有结构信息传送到目标即将导致各种伪像。要应对这个问题,我们提出了一个名为Deep Enterponal引导图像过滤的有效框架,其过滤过程可以完全集成两个图像中包含的互补信息。具体地,我们提出了一种注意力内核学习模块,分别从引导和目标生成双组滤波器内核,然后通过在两个图像之间建模像素方向依赖性来自适应地组合它们。同时,我们提出了一种多尺度引导图像滤波模块,以粗略的方式通过所构造的内核逐渐产生滤波结果。相应地,引入了多尺度融合策略以重用中间导点在粗略的过程中。广泛的实验表明,所提出的框架在广泛的引导图像滤波应用中,诸如引导超分辨率,横向模态恢复,纹理拆除和语义分割的最先进的方法。
translated by 谷歌翻译
Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation. It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions.
translated by 谷歌翻译
Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.
translated by 谷歌翻译
Feedforward fully convolutional neural networks currently dominate in semantic segmentation of 3D point clouds. Despite their great success, they suffer from the loss of local information at low-level layers, posing significant challenges to accurate scene segmentation and precise object boundary delineation. Prior works either address this issue by post-processing or jointly learn object boundaries to implicitly improve feature encoding of the networks. These approaches often require additional modules which are difficult to integrate into the original architecture. To improve the segmentation near object boundaries, we propose a boundary-aware feature propagation mechanism. This mechanism is achieved by exploiting a multi-task learning framework that aims to explicitly guide the boundaries to their original locations. With one shared encoder, our network outputs (i) boundary localization, (ii) prediction of directions pointing to the object's interior, and (iii) semantic segmentation, in three parallel streams. The predicted boundaries and directions are fused to propagate the learned features to refine the segmentation. We conduct extensive experiments on the S3DIS and SensatUrban datasets against various baseline methods, demonstrating that our proposed approach yields consistent improvements by reducing boundary errors. Our code is available at https://github.com/shenglandu/PushBoundary.
translated by 谷歌翻译
The deficiency of segmentation labels is one of the main obstacles to semantic segmentation in the wild. To alleviate this issue, we present a novel framework that generates segmentation labels of images given their image-level class labels. In this weakly supervised setting, trained models have been known to segment local discriminative parts rather than the entire object area. Our solution is to propagate such local responses to nearby areas which belong to the same semantic entity. To this end, we propose a Deep Neural Network (DNN) called AffinityNet that predicts semantic affinity between a pair of adjacent image coordinates. The semantic propagation is then realized by random walk with the affinities predicted by AffinityNet. More importantly, the supervision employed to train AffinityNet is given by the initial discriminative part segmentation, which is incomplete as a segmentation annotation but sufficient for learning semantic affinities within small image areas. Thus the entire framework relies only on image-level class labels and does not require any extra data or annotations. On the PASCAL VOC 2012 dataset, a DNN learned with segmentation labels generated by our method outperforms previous models trained with the same level of supervision, and is even as competitive as those relying on stronger supervision.
translated by 谷歌翻译
We pose video object segmentation as spectral graph clustering in space and time, with one graph node for each pixel and edges forming local space-time neighborhoods. We claim that the strongest cluster in this video graph represents the salient object. We start by introducing a novel and efficient method based on 3D filtering for approximating the spectral solution, as the principal eigenvector of the graph's adjacency matrix, without explicitly building the matrix. This key property allows us to have a fast parallel implementation on GPU, orders of magnitude faster than classical approaches for computing the eigenvector. Our motivation for a spectral space-time clustering approach, unique in video semantic segmentation literature, is that such clustering is dedicated to preserving object consistency over time, which we evaluate using our novel segmentation consistency measure. Further on, we show how to efficiently learn the solution over multiple input feature channels. Finally, we extend the formulation of our approach beyond the segmentation task, into the realm of object tracking. In extensive experiments we show significant improvements over top methods, as well as over powerful ensembles that combine them, achieving state-of-the-art on multiple benchmarks, both for tracking and segmentation.
translated by 谷歌翻译
视频突出对象检测旨在在视频中找到最具视觉上的对象。为了探索时间依赖性,现有方法通常是恢复性的神经网络或光学流量。然而,这些方法需要高计算成本,并且往往会随着时间的推移积累不准确性。在本文中,我们提出了一种带有注意模块的网络,以学习视频突出物体检测的对比特征,而没有高计算时间建模技术。我们开发了非本地自我关注方案,以捕获视频帧中的全局信息。共注意配方用于结合低级和高级功能。我们进一步应用了对比学学习以改善来自相同视频的前景区域对的特征表示,并将前景 - 背景区域对被推除在潜在的空间中。帧内对比损失有助于将前景和背景特征分开,并且帧间的对比损失提高了时间的稠度。我们对多个基准数据集进行广泛的实验,用于视频突出对象检测和无监督的视频对象分割,并表明所提出的方法需要较少的计算,并且对最先进的方法进行有利地执行。
translated by 谷歌翻译
边界是人类和计算机视觉系统使用的主要视觉提示之一。边界检测的关键问题之一是标签表示,这通常会导致类不平衡,因此,较厚的边界需要稀疏的非差异后处理步骤。在本文中,我们将边界重新解释为1D表面,并制定一对一的向量变换功能,允许训练边界预测完全避免了类不平衡问题。具体而言,我们在任何点定义边界表示,因为单位向量指向最接近的边界表面。我们的问题表述可导致方向的估计以及边界的更丰富的上下文信息,如果需要,在训练时也可以使用零像素薄边界。我们的方法在训练损失中不使用超参数和推断时固定的稳定的高参数。我们提供有关向量变换表示的理论理由/讨论。我们使用标准体系结构评估了提出的损失方法,并显示了几个数据集上其他损失和表示的出色性能。代码可在https://github.com/edomel/boundaryvt上找到。
translated by 谷歌翻译
弱监督的语义细分(WSSS)旨在仅使用用于训练的图像级标签来产生像素类预测。为此,以前的方法采用了通用管道:它们从类激活图(CAM)生成伪口罩,并使用此类掩码来监督分割网络。但是,由于凸轮的局部属性,即它们倾向于仅专注于小的判别对象零件,因此涵盖涵盖整个物体的全部范围的全面伪面罩是一项挑战。在本文中,我们将CAM的局部性与卷积神经网络(CNNS)的质地偏见特性相关联。因此,我们建议利用形状信息来补充质地偏见的CNN特征,从而鼓励掩模预测不仅是全面的,而且还与物体边界相交。我们通过一种新颖的改进方法进一步完善了在线方式的预测,该方法同时考虑了类和颜色亲和力,以生成可靠的伪口罩以监督模型。重要的是,我们的模型是在单阶段框架内进行端到端训练的,因此在培训成本方面有效。通过对Pascal VOC 2012的广泛实验,我们验证了方法在产生精确和形状对准的分割结果方面的有效性。具体而言,我们的模型超过了现有的最新单阶段方法。此外,当在没有铃铛和哨声的简单两阶段管道中采用时,它还在多阶段方法上实现了新的最新性能。
translated by 谷歌翻译
Partitioning an image into superpixels based on the similarity of pixels with respect to features such as colour or spatial location can significantly reduce data complexity and improve subsequent image processing tasks. Initial algorithms for unsupervised superpixel generation solely relied on local cues without prioritizing significant edges over arbitrary ones. On the other hand, more recent methods based on unsupervised deep learning either fail to properly address the trade-off between superpixel edge adherence and compactness or lack control over the generated number of superpixels. By using random images with strong spatial correlation as input, \ie, blurred noise images, in a non-convolutional image decoder we can reduce the expected number of contrasts and enforce smooth, connected edges in the reconstructed image. We generate edge-sparse pixel embeddings by encoding additional spatial information into the piece-wise smooth activation maps from the decoder's last hidden layer and use a standard clustering algorithm to extract high quality superpixels. Our proposed method reaches state-of-the-art performance on the BSDS500, PASCAL-Context and a microscopy dataset.
translated by 谷歌翻译
Deep Convolutional Neural Networks (DCNNs) have recently shown state of the art performance in high level vision tasks, such as image classification and object detection. This work brings together methods from DCNNs and probabilistic graphical models for addressing the task of pixel-level classification (also called "semantic image segmentation"). We show that responses at the final layer of DCNNs are not sufficiently localized for accurate object segmentation. This is due to the very invariance properties that make DCNNs good for high level tasks. We overcome this poor localization property of deep networks by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF). Qualitatively, our "DeepLab" system is able to localize segment boundaries at a level of accuracy which is beyond previous methods. Quantitatively, our method sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 71.6% IOU accuracy in the test set. We show how these results can be obtained efficiently: Careful network re-purposing and a novel application of the 'hole' algorithm from the wavelet community allow dense computation of neural net responses at 8 frames per second on a modern GPU.
translated by 谷歌翻译