We develop a new edge detection algorithm that addresses two important issues in this long-standing vision problem: (1) holistic image training and prediction; and (2) multi-scale and multi-level feature learning. Our proposed method, holistically-nested edge detection (HED), performs image-to-image prediction by means of a deep learning model that leverages fully convolutional neural networks and deeply-supervised nets. HED automatically learns rich hierarchical representations (guided by deep supervision on side responses) that are important in order to resolve the challenging ambiguity in edge and object boundary detection.We significantly advance the state-of-the-art on the BSD500 dataset (ODS F-score of .782) and the NYU Depth dataset (ODS F-score of .746), and do so with an improved speed (0.4s per image) that is orders of magnitude faster than some recent CNN-based edge detection algorithms.
translated by 谷歌翻译
Recent progress on salient object detection is substantial, benefiting mostly from the explosive development of Convolutional Neural Networks (CNNs). Semantic segmentation and salient object detection algorithms developed lately have been mostly based on Fully Convolutional Neural Networks (FCNs). There is still a large room for improvement over the generic FCN models that do not explicitly deal with the scale-space problem. Holistically-Nested Edge Detector (HED) provides a skip-layer structure with deep supervision for edge and boundary detection, but the performance gain of HED on saliency detection is not obvious. In this paper, we propose a new salient object detection method by introducing short connections to the skip-layer structures within the HED architecture. Our framework takes full advantage of multi-level and multi-scale features extracted from FCNs, providing more advanced representations at each layer, a property that is critically needed to perform segment detection. Our method produces state-of-theart results on 5 widely tested salient object detection benchmarks, with advantages in terms of efficiency (0.08 seconds per image), effectiveness, and simplicity over the existing algorithms. Beyond that, we conduct an exhaustive analysis on the role of training data on performance. Our experimental results provide a more reasonable and powerful training set for future research and fair comparisons.
translated by 谷歌翻译
Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixelsto-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build "fully convolutional" networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet [20], the VGG net [31], and GoogLeNet [32]) into fully convolutional networks and transfer their learned representations by fine-tuning [3] to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves stateof-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes less than one fifth of a second for a typical image.
translated by 谷歌翻译
Due to object detection's close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles which combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy and optimization function, etc. In this paper, we provide a review on deep learning based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely Convolutional Neural Network (CNN). Then we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network based learning systems.
translated by 谷歌翻译
边缘检测是许多计算机视觉应用的基础。最先进的国家主要依赖于两个决定性因素的深度学习:数据集内容和网络的体系结构。大多数公共可用数据集未策划边缘检测任务。在这里,我们为此约束提供解决方案。首先,我们认为边缘,轮廓和边界尽管它们重叠,是需要单独的基准数据集的三个不同的视觉功能。为此,我们介绍了一个新的边缘数据集。其次,我们提出了一种新颖的架构,称为边缘检测(Dexined)的密集极端成立网络,可以从划痕的情况下培训,而没有任何预先训练的重量。Dexined优于所呈现的数据集中的其他算法。它还概括到其他数据集没有任何微调。由于IT输出的更锐利和更精细的边缘,所以更高的Dexined质量也显着显着。
translated by 谷歌翻译
Incorporating multi-scale features in fully convolutional neural networks (FCNs) has been a key element to achieving state-of-the-art performance on semantic image segmentation. One common way to extract multi-scale features is to feed multiple resized input images to a shared deep network and then merge the resulting features for pixelwise classification. In this work, we propose an attention mechanism that learns to softly weight the multi-scale features at each pixel location. We adapt a state-of-the-art semantic image segmentation model, which we jointly train with multi-scale input images and the attention model. The proposed attention model not only outperforms averageand max-pooling, but allows us to diagnostically visualize the importance of features at different positions and scales. Moreover, we show that adding extra supervision to the output at each scale is essential to achieving excellent performance when merging multi-scale features. We demonstrate the effectiveness of our model with extensive experiments on three challenging datasets, including PASCAL-Person-Part,
translated by 谷歌翻译
跨不同层的特征的聚合信息是密集预测模型的基本操作。尽管表现力有限,但功能级联占主导地位聚合运营的选择。在本文中,我们引入了细分特征聚合(AFA),以融合不同的网络层,具有更具表现力的非线性操作。 AFA利用空间和渠道注意,以计算层激活的加权平均值。灵感来自神经体积渲染,我们将AFA扩展到规模空间渲染(SSR),以执行多尺度预测的后期融合。 AFA适用于各种现有网络设计。我们的实验表明了对挑战性的语义细分基准,包括城市景观,BDD100K和Mapillary Vistas的一致而显着的改进,可忽略不计的计算和参数开销。特别是,AFA改善了深层聚集(DLA)模型在城市景观上的近6%Miou的性能。我们的实验分析表明,AFA学会逐步改进分割地图并改善边界细节,导致新的最先进结果对BSDS500和NYUDV2上的边界检测基准。在http://vis.xyz/pub/dla-afa上提供代码和视频资源。
translated by 谷歌翻译
Deep Convolutional Neural Networks (DCNNs) have recently shown state of the art performance in high level vision tasks, such as image classification and object detection. This work brings together methods from DCNNs and probabilistic graphical models for addressing the task of pixel-level classification (also called "semantic image segmentation"). We show that responses at the final layer of DCNNs are not sufficiently localized for accurate object segmentation. This is due to the very invariance properties that make DCNNs good for high level tasks. We overcome this poor localization property of deep networks by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF). Qualitatively, our "DeepLab" system is able to localize segment boundaries at a level of accuracy which is beyond previous methods. Quantitatively, our method sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 71.6% IOU accuracy in the test set. We show how these results can be obtained efficiently: Careful network re-purposing and a novel application of the 'hole' algorithm from the wavelet community allow dense computation of neural net responses at 8 frames per second on a modern GPU.
translated by 谷歌翻译
Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.
translated by 谷歌翻译
Fully convolutional neural networks (FCNs) have shown their advantages in the salient object detection task. However, most existing FCNs-based methods still suffer from coarse object boundaries. In this paper, to solve this problem, we focus on the complementarity between salient edge information and salient object information. Accordingly, we present an edge guidance network (EGNet) for salient object detection with three steps to simultaneously model these two kinds of complementary information in a single network. In the first step, we extract the salient object features by a progressive fusion way. In the second step, we integrate the local edge information and global location information to obtain the salient edge features. Finally, to sufficiently leverage these complementary features, we couple the same salient edge features with salient object features at various resolutions. Benefiting from the rich edge information and location information in salient edge features, the fused features can help locate salient objects, especially their boundaries more accurately. Experimental results demonstrate that the proposed method performs favorably against the state-of-the-art methods on six widely used datasets without any pre-processing and post-processing. The source code is available at http: //mmcheng.net/egnet/.
translated by 谷歌翻译
Australian Centre for Robotic Vision {guosheng.lin;anton.milan;chunhua.shen;
translated by 谷歌翻译
Deep Convolutional Neural Networks have been adopted for salient object detection and achieved the state-of-the-art performance. Most of the previous works however focus on region accuracy but not on the boundary quality. In this paper, we propose a predict-refine architecture, BASNet, and a new hybrid loss for Boundary-Aware Salient object detection. Specifically, the architecture is composed of a densely supervised Encoder-Decoder network and a residual refinement module, which are respectively in charge of saliency prediction and saliency map refinement. The hybrid loss guides the network to learn the transformation between the input image and the ground truth in a three-level hierarchy -pixel-, patch-and map-level -by fusing Binary Cross Entropy (BCE), Structural SIMilarity (SSIM) and Intersectionover-Union (IoU) losses. Equipped with the hybrid loss, the proposed predict-refine architecture is able to effectively segment the salient object regions and accurately predict the fine structures with clear boundaries. Experimental results on six public datasets show that our method outperforms the state-of-the-art methods both in terms of regional and boundary evaluation measures. Our method runs at over 25 fps on a single GPU. The code is available at: https://github.com/NathanUA/BASNet.
translated by 谷歌翻译
In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7% mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.
translated by 谷歌翻译
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3 × 3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
translated by 谷歌翻译
We propose a novel semantic segmentation algorithm by learning a deconvolution network. We learn the network on top of the convolutional layers adopted from VGG 16layer net. The deconvolution network is composed of deconvolution and unpooling layers, which identify pixel-wise class labels and predict segmentation masks. We apply the trained network to each proposal in an input image, and construct the final semantic segmentation map by combining the results from all proposals in a simple manner. The proposed algorithm mitigates the limitations of the existing methods based on fully convolutional networks by integrating deep deconvolution network and proposal-wise prediction; our segmentation method typically identifies detailed structures and handles objects in multiple scales naturally. Our network demonstrates outstanding performance in PASCAL VOC 2012 dataset, and we achieve the best accuracy (72.5%) among the methods trained with no external data through ensemble with the fully convolutional network.
translated by 谷歌翻译
Scene parsing is challenging for unrestricted open vocabulary and diverse scenes. In this paper, we exploit the capability of global context information by different-regionbased context aggregation through our pyramid pooling module together with the proposed pyramid scene parsing network (PSPNet). Our global prior representation is effective to produce good quality results on the scene parsing task, while PSPNet provides a superior framework for pixellevel prediction. The proposed approach achieves state-ofthe-art performance on various datasets. It came first in Im-ageNet scene parsing challenge 2016, PASCAL VOC 2012 benchmark and Cityscapes benchmark. A single PSPNet yields the new record of mIoU accuracy 85.4% on PASCAL VOC 2012 and accuracy 80.2% on Cityscapes.
translated by 谷歌翻译
近年来,已经产生了大量的视觉内容,并从许多领域共享,例如社交媒体平台,医学成像和机器人。这种丰富的内容创建和共享引入了新的挑战,特别是在寻找类似内容内容的图像检索(CBIR)-A的数据库中,即长期建立的研究区域,其中需要改进的效率和准确性来实时检索。人工智能在CBIR中取得了进展,并大大促进了实例搜索过程。在本调查中,我们审查了最近基于深度学习算法和技术开发的实例检索工作,通过深网络架构类型,深度功能,功能嵌入方法以及网络微调策略组织了调查。我们的调查考虑了各种各样的最新方法,在那里,我们识别里程碑工作,揭示各种方法之间的联系,并呈现常用的基准,评估结果,共同挑战,并提出未来的未来方向。
translated by 谷歌翻译
玻璃在我们的日常生活中非常普遍。现有的计算机视觉系统忽略了它,因此可能会产生严重的后果,例如,机器人可能会坠入玻璃墙。但是,感知玻璃的存在并不简单。关键的挑战是,任意物体/场景可以出现在玻璃后面。在本文中,我们提出了一个重要的问题,即从单个RGB图像中检测玻璃表面。为了解决这个问题,我们构建了第一个大规模玻璃检测数据集(GDD),并提出了一个名为GDNet-B的新颖玻璃检测网络,该网络通过新颖的大型场探索大型视野中的丰富上下文提示上下文特征集成(LCFI)模块并将高级和低级边界特征与边界特征增强(BFE)模块集成在一起。广泛的实验表明,我们的GDNET-B可以在GDD测试集内外的图像上达到满足玻璃检测结果。我们通过将其应用于其他视觉任务(包括镜像分割和显着对象检测)来进一步验证我们提出的GDNET-B的有效性和概括能力。最后,我们显示了玻璃检测的潜在应用,并讨论了可能的未来研究方向。
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
玻璃在现实世界中非常普遍。受玻璃区域的不确定性以及玻璃背后的各种复杂场景的影响,玻璃的存在对许多计算机视觉任务构成了严重的挑战,从而使玻璃分割成为重要的计算机视觉任务。玻璃没有自己的视觉外观,而只能传输/反映其周围环境的外观,从而与其他常见对象根本不同。为了解决此类具有挑战性的任务,现有方法通常会探索并结合深网络中不同特征级别的有用线索。由于存在级别不同的特征之间的特征差距,即,深层特征嵌入了更多高级语义,并且更好地定位目标对象,而浅层特征具有更大的空间尺寸,并保持更丰富,更详细的低级信息,因此,将这些特征融合到天真的融合将导致亚最佳溶液。在本文中,我们将有效的特征融合到两个步骤中,以朝着精确的玻璃分割。首先,我们试图通过开发可区分性增强(DE)模块来弥合不同级别特征之间的特征差距,该模块使特定于级别的特征成为更具歧视性的表示,从而减轻了融合不兼容的特征。其次,我们设计了一个基于焦点和探索的融合(FEBF)模块,以通过突出显示常见并探索级别差异特征之间的差异,从而在融合过程中丰富挖掘有用的信息。
translated by 谷歌翻译