对于给定的分发,学习算法和性能度量,收敛速度(或数据缩放法)是算法测试性能的渐近行为作为列车样本数量的函数。理论和实践中的许多学习方法都有幂律速率,即绩效尺度为$ n ^ { - \ alpha} $ for for some $ \ alpha> 0 $。此外,科学人员和从业者都关注在感兴趣的环境中提高他们的学习算法的速率。我们观察到“普遍学习者”的存在,这在指定的运行时(例如$ O(n ^ 2)$)中的所有学习算法中获得了最佳分布依赖性渐近率(例如,o(n ^ 2)),而在此运行时仅导致积极转移减速。该算法是均匀的,并且不依赖于分布,但实现所有分布的最佳速率。建筑本身是莱文普遍搜索的简单延伸(Levin,1973)。并且与普遍搜索一样,通用学习者并不实用,主要是理论和哲学兴趣。
translated by 谷歌翻译
多集团不可知学习是一个正式的学习标准,涉及人口亚组内的预测因子的条件风险。标准解决了最近的实际问题,如亚组公平和隐藏分层。本文研究了对多组学习问题的解决方案的结构,为学习问题提供了简单和近最佳的算法。
translated by 谷歌翻译
Learning problems form an important category of computational tasks that generalizes many of the computations researchers apply to large real-life data sets. We ask: what concept classes can be learned privately, namely, by an algorithm whose output does not depend too heavily on any one input or specific training example? More precisely, we investigate learning algorithms that satisfy differential privacy, a notion that provides strong confidentiality guarantees in contexts where aggregate information is released about a database containing sensitive information about individuals.Our goal is a broad understanding of the resources required for private learning in terms of samples, computation time, and interaction. We demonstrate that, ignoring computational constraints, it is possible to privately agnostically learn any concept class using a sample size approximately logarithmic in the cardinality of the concept class. Therefore, almost anything learnable is learnable privately: specifically, if a concept class is learnable by a (non-private) algorithm with polynomial sample complexity and output size, then it can be learned privately using a polynomial number of samples. We also present a computationally efficient private PAC learner for the class of parity functions. This result dispels the similarity between learning with noise and private learning (both must be robust to small changes in inputs), since parity is thought to be very hard to learn given random classification noise.Local (or randomized response) algorithms are a practical class of private algorithms that have received extensive investigation. We provide a precise characterization of local private learning algorithms. We show that a concept class is learnable by a local algorithm if and only if it is learnable in the statistical query (SQ) model. Therefore, for local private learning algorithms, the similarity to learning with noise is stronger: local learning is equivalent to SQ learning, and SQ algorithms include most known noise-tolerant learning algorithms. Finally, we present a separation between the power of interactive and noninteractive local learning algorithms. Because of the equivalence to SQ learning, this result also separates adaptive and nonadaptive SQ learning.
translated by 谷歌翻译
一系列不受限制的在线凸优化中的作品已经调查了同时调整比较器的规范$ u $和梯度的最大规范$ g $的可能性。在完全的一般性中,已知匹配的上限和下界表明,这是不可避免的$ g u^3 $的不可避免的成本,当$ g $或$ u $提前知道时,这是不需要的。令人惊讶的是,Kempka等人的最新结果。 (2019年)表明,在特定情况下,不需要这样的适应性价格,例如$ -Lipschitz损失(例如铰链损失)。我们通过表明我们专门研究任何其他常见的在线学习损失,我们的结果涵盖了日志损失,(线性和非参数)逻辑回归,我们实际上从来没有任何代价来为适应性支付的代价,从而跟进这一观察结果,我们会跟进这一观察结果。方形损耗预测,以及(线性和非参数)最小二乘回归。我们还通过提供对$ U $的明确依赖的下限来填补文献中的几个空白。在所有情况下,我们都会获得无标度算法,这些算法在数据恢复下是合理的不变。我们的一般目标是在不关心计算效率的情况下建立可实现的速率,但是对于线性逻辑回归,我们还提供了一种适应性方法,该方法与Agarwal等人的最新非自适应算法一样有效。 (2021)。
translated by 谷歌翻译
解决机器学习模型的公平关注是朝着实际采用现实世界自动化系统中的至关重要的一步。尽管已经开发了许多方法来从数据培训公平模型,但对这些方法对数据损坏的鲁棒性知之甚少。在这项工作中,我们考虑在最坏情况下的数据操作下进行公平意识学习。我们表明,在某些情况下,对手可能会迫使任何学习者返回过度偏见的分类器,无论样本量如何,有或没有降解的准确性,并且多余的偏见的强度会增加数据中数据不足的受保护组的学习问题,而数据中有代表性不足的组。我们还证明,我们的硬度结果紧密到不断的因素。为此,我们研究了两种自然学习算法,以优化准确性和公平性,并表明这些算法在损坏比和较大数据限制中受保护的群体频率方面享有订单最佳的保证。
translated by 谷歌翻译
鉴于$ n $ i.i.d.从未知的分发$ P $绘制的样本,何时可以生成更大的$ n + m $ samples,这些标题不能与$ n + m $ i.i.d区别区别。从$ p $绘制的样品?(AXELROD等人2019)将该问题正式化为样本放大问题,并为离散分布和高斯位置模型提供了最佳放大程序。然而,这些程序和相关的下限定制到特定分布类,对样本扩增的一般统计理解仍然很大程度上。在这项工作中,我们通过推出通常适用的放大程序,下限技术和与现有统计概念的联系来放置对公司统计基础的样本放大问题。我们的技术适用于一大类分布,包括指数家庭,并在样本放大和分配学习之间建立严格的联系。
translated by 谷歌翻译
收购数据是机器学习的许多应用中的一项艰巨任务,只有一个人希望并且预期人口风险在单调上汇率增加(更好的性能)。事实证明,甚至对于最小化经验风险的最大限度的算法,甚至不令人惊讶的情况。在训练中的风险和不稳定的非单调行为表现出并出现在双重血统描述中的流行深度学习范式中。这些问题突出了目前对学习算法和泛化的理解缺乏了解。因此,追求这种行为的表征是至关重要的,这是至关重要的。在本文中,我们在弱假设下获得了一致和风险的单调算法,从而解决了一个打开问题Viering等。 2019关于如何避免风险曲线的非单调行为。我们进一步表明,风险单调性不一定以更糟糕的风险率的价格出现。为实现这一目标,我们推出了持有某些非I.I.D的独立利益的新经验伯恩斯坦的浓度不等式。鞅差异序列等进程。
translated by 谷歌翻译
我们建立了量子算法设计与电路下限之间的第一一般连接。具体来说,让$ \ mathfrak {c} $是一类多项式大小概念,假设$ \ mathfrak {c} $可以在统一分布下的成员查询,错误$ 1/2 - \ gamma $通过时间$ t $量子算法。我们证明如果$ \ gamma ^ 2 \ cdot t \ ll 2 ^ n / n $,则$ \ mathsf {bqe} \ nsubseteq \ mathfrak {c} $,其中$ \ mathsf {bqe} = \ mathsf {bque} [2 ^ {o(n)}] $是$ \ mathsf {bqp} $的指数时间模拟。在$ \ gamma $和$ t $中,此结果是最佳的,因为它不难学习(经典)时间$ t = 2 ^ n $(没有错误) ,或在Quantum Time $ t = \ mathsf {poly}(n)$以傅立叶采样为单位为1/2美元(2 ^ { - n / 2})$。换句话说,即使对这些通用学习算法的边际改善也会导致复杂性理论的主要后果。我们的证明在学习理论,伪随机性和计算复杂性的几个作品上构建,并且至关重要地,在非凡的经典学习算法与由Oliveira和Santhanam建立的电路下限之间的联系(CCC 2017)。扩展他们对量子学习算法的方法,结果产生了重大挑战。为此,我们展示了伪随机发电机如何以通用方式意味着学习到较低的连接,构建针对均匀量子计算的第一个条件伪随机发生器,并扩展了Impagliazzo,JaiSwal的本地列表解码算法。 ,Kabanets和Wigderson(Sicomp 2010)通过微妙的分析到量子电路。我们认为,这些贡献是独立的兴趣,可能会发现其他申请。
translated by 谷歌翻译
神经网络(NNS)也很难有效地学习某些问题,例如奇偶校验问题,即使对于这些问题有简单的学习算法。NNS可以自己发现学习算法吗?我们展示了一个NN体系结构,在多项式时期,可以通过恒定尺寸的学习算法来学习以及任何有效的学习算法。例如,在奇偶校验问题上,NN学习和减少行,这是一种可以简单描述的有效算法。我们的体系结构结合了层和卷积重量共享之间的重复分享,即使网络本身可能具有数万亿个节点,也将参数数量降低到常数。在实践中,我们的分析中的常数太大而无法直接有意义,但我们的工作表明,经常性和卷积NNS(RCNN)的协同作用可能比单独的任何一个更强大。
translated by 谷歌翻译
尽管U统计量在现代概率和统计学中存在着无处不在的,但其在依赖框架中的非反应分析可能被忽略了。在最近的一项工作中,已经证明了对统一的马尔可夫链的U级统计数据的新浓度不平等。在本文中,我们通过在三个不同的研究领域中进一步推动了当前知识状态,将这一理论突破付诸实践。首先,我们为使用MCMC方法估算痕量类积分运算符光谱的新指数不平等。新颖的是,这种结果适用于具有正征和负征值的内核,据我们所知,这是新的。此外,我们研究了使用成对损失函数和马尔可夫链样品的在线算法的概括性能。我们通过展示如何从任何在线学习者产生的假设序列中提取低风险假设来提供在线到批量转换结果。我们最终对马尔可夫链的不变度度量的密度进行了拟合优度测试的非反应分析。我们确定了一些类别的替代方案,基于$ L_2 $距离的测试具有规定的功率。
translated by 谷歌翻译
The research area of algorithms with predictions has seen recent success showing how to incorporate machine learning into algorithm design to improve performance when the predictions are correct, while retaining worst-case guarantees when they are not. Most previous work has assumed that the algorithm has access to a single predictor. However, in practice, there are many machine learning methods available, often with incomparable generalization guarantees, making it hard to pick a best method a priori. In this work we consider scenarios where multiple predictors are available to the algorithm and the question is how to best utilize them. Ideally, we would like the algorithm's performance to depend on the quality of the best predictor. However, utilizing more predictions comes with a cost, since we now have to identify which prediction is the best. We study the use of multiple predictors for a number of fundamental problems, including matching, load balancing, and non-clairvoyant scheduling, which have been well-studied in the single predictor setting. For each of these problems we introduce new algorithms that take advantage of multiple predictors, and prove bounds on the resulting performance.
translated by 谷歌翻译
学习曲线将学习算法的预期误差绘制为标记输入样本数量的函数。它们被机器学习实践者广泛使用,以衡量算法的性能,但是经典的PAC学习理论无法解释其行为。在本文中,我们介绍了一种称为VCL维度的新组合表征,该表征改进并完善了Bousquet等人的最新结果。 (2021)。我们的表征通过提供细粒度的边界来展示学习曲线的结构,并表明对于有限VCL的类,可以将衰减的速率分解为仅取决于假设类别和指数成分的线性组件,该成分是指数的成分。还取决于目标分布。特别是,VCL维度的细微差别意味着比Bousquet等人的边界更强大的下限。 (2021年),比经典的“无免费午餐”下界强。 VCL表征解决了Antos and Lugosi(1998)研究的一个开放问题,他们询问在哪些情况下存在这种下限。作为推论,我们在$ \ mathbb {r}^d $中恢复了其下限,并以原则性的方式也适用于其他情况。最后,为了对我们的工作以及与传统PAC学习界的比较提供另一个观点,我们还以一种更接近PAC环境的语言展示了结果的替代表述。
translated by 谷歌翻译
We establish a simple connection between robust and differentially-private algorithms: private mechanisms which perform well with very high probability are automatically robust in the sense that they retain accuracy even if a constant fraction of the samples they receive are adversarially corrupted. Since optimal mechanisms typically achieve these high success probabilities, our results imply that optimal private mechanisms for many basic statistics problems are robust. We investigate the consequences of this observation for both algorithms and computational complexity across different statistical problems. Assuming the Brennan-Bresler secret-leakage planted clique conjecture, we demonstrate a fundamental tradeoff between computational efficiency, privacy leakage, and success probability for sparse mean estimation. Private algorithms which match this tradeoff are not yet known -- we achieve that (up to polylogarithmic factors) in a polynomially-large range of parameters via the Sum-of-Squares method. To establish an information-computation gap for private sparse mean estimation, we also design new (exponential-time) mechanisms using fewer samples than efficient algorithms must use. Finally, we give evidence for privacy-induced information-computation gaps for several other statistics and learning problems, including PAC learning parity functions and estimation of the mean of a multivariate Gaussian.
translated by 谷歌翻译
我们研究了Massart噪声的PAC学习半圆的问题。给定标记的样本$(x,y)$从$ \ mathbb {r} ^ {d} ^ {d} \ times \ times \ {\ pm 1 \} $,这样的例子是任意的和标签$ y $ y $ y $ x $是由按萨塔特对手损坏的目标半空间与翻转概率$ \ eta(x)\ leq \ eta \ leq 1/2 $,目标是用小小的假设计算假设错误分类错误。这个问题的最佳已知$ \ mathrm {poly}(d,1 / \ epsilon)$时间算法实现$ \ eta + \ epsilon $的错误,这可能远离$ \ mathrm {opt} +的最佳界限\ epsilon $,$ \ mathrm {opt} = \ mathbf {e} _ {x \ sim d_x} [\ eta(x)] $。虽然已知实现$ \ mathrm {opt} + O(1)$误差需要超级多项式时间在统计查询模型中,但是在已知的上限和下限之间存在大的间隙。在这项工作中,我们基本上表征了统计查询(SQ)模型中Massart HalfSpaces的有效可读性。具体来说,我们表明,在$ \ mathbb {r} ^ d $中没有高效的sq算法用于学习massart halfpaces ^ d $可以比$ \ omega(\ eta)$更好地实现错误,即使$ \ mathrm {opt} = 2 ^ { - - \ log ^ {c}(d)$,适用于任何通用常量$ c \ in(0,1)$。此外,当噪声上限$ \ eta $接近$ 1/2 $时,我们的错误下限变为$ \ eta - o _ {\ eta}(1)$,其中$ o _ {\ eta}(1)$当$ \ eta $接近$ 1/2 $时,术语达到0美元。我们的结果提供了强有力的证据表明,大规模半空间的已知学习算法几乎是最可能的,从而解决学习理论中的长期开放问题。
translated by 谷歌翻译
本文研究了以$ \ mathbb {r}^d $使用球形协方差矩阵$ \ sigma^2 \ sigma^2 \ mathbf {i} $的$ k $学习中心的样本复杂性。特别是,我们对以下问题感兴趣:最大噪声水平$ \ sigma^2 $是什么,对此样品复杂性基本与从标记的测量值估算中心时相同?为此,我们将注意力限制为问题的贝叶斯公式,其中中心均匀分布在球体上$ \ sqrt {d} \ Mathcal {s}^{d-1} $。我们的主要结果表征了确切的噪声阈值$ \ sigma^2 $,而GMM学习问题(在大系统中限制$ d,k \ to \ infty $)就像从标记的观测值中学习一样容易更加困难。阈值发生在$ \ frac {\ log k} {d} = \ frac12 \ log \ left(1+ \ frac {1} {1} {\ sigma^2} \ right)$,这是添加性白色高斯的能力噪声(AWGN)频道。将$ K $中心的集合作为代码,可以将此噪声阈值解释为最大的噪声水平,AWGN通道上代码的错误概率很小。关于GMM学习问题的先前工作已将中心之间的最小距离确定为确定学习相应GMM的统计难度的关键参数。虽然我们的结果仅是针对中心均匀分布在球体上的GMM的,但他们暗示,也许这是与中心星座相关的解码错误概率作为频道代码确定学习相应GMM的统计难度,而不是仅仅最小距离。
translated by 谷歌翻译
Minimax优化已成为许多机器学习(ML)问题的骨干。尽管优化算法的收敛行为已在minimax设置中进行了广泛的研究,但它们在随机环境中的概括保证,即对经验数据训练的解决方案如何在看不见的测试数据上执行,但相对却相对均未被倍增。一个基本问题仍然难以捉摸:研究最小学习者的概括是什么?在本文中,我们的目标是首先证明原始风险是研究最小化中的普遍性的普遍指标,在简单的最小问题示例中失败了。此外,由于鞍点不存在,另一个流行的指标,即原始的双重风险,也无法表征非凸度问题的最小值问题的概括行为。因此,我们提出了一个新的指标,以研究最小学习者的概括:原始差距,以规避这些问题。接下来,我们在非convex-concave设置中得出原始差距的概括范围。作为我们分析的副产品,我们还解决了两个空旷的问题:在强大意义上,建立原始风险和原始偶发风险的概括范围,即没有强大的凹面或假设最大化和期望可以互换,而这些假设中的任何一个都可以互换在文献中需要。最后,我们利用这一新指标比较了两种流行算法的概括行为 - 梯度下降(GDA)和梯度下降 - 最大趋势 - 最小值优化。
translated by 谷歌翻译
我们研究了称为“乐观速率”(Panchenko 2002; Srebro等,2010)的统一收敛概念,用于与高斯数据的线性回归。我们的精致分析避免了现有结果中的隐藏常量和对数因子,这已知在高维设置中至关重要,特别是用于了解插值学习。作为一个特殊情况,我们的分析恢复了Koehler等人的保证。(2021年),在良性过度的过度条件下,严格地表征了低规范内插器的人口风险。但是,我们的乐观速度绑定还分析了具有任意训练错误的预测因子。这使我们能够在随机设计下恢复脊和套索回归的一些经典统计保障,并有助于我们在过度参数化制度中获得精确了解近端器的过度风险。
translated by 谷歌翻译
可实现和不可知性的可读性的等价性是学习理论的基本现象。与PAC学习和回归等古典设置范围的变种,近期趋势,如对冲强劲和私人学习,我们仍然缺乏统一理论;等同性的传统证据往往是不同的,并且依赖于强大的模型特异性假设,如统一的收敛和样本压缩。在这项工作中,我们给出了第一个独立的框架,解释了可实现和不可知性的可读性的等价性:三行黑箱减少简化,统一,并在各种各样的环境中扩展了我们的理解。这包括没有已知的学报的模型,例如学习任意分布假设或一般损失,以及许多其他流行的设置,例如强大的学习,部分学习,公平学习和统计查询模型。更一般地,我们认为可实现和不可知的学习的等价性实际上是我们调用属性概括的更广泛现象的特殊情况:可以满足有限的学习算法(例如\噪声公差,隐私,稳定性)的任何理想性质假设类(可能在某些变化中)延伸到任何学习的假设类。
translated by 谷歌翻译
本文衍生了置信区间(CI)和时间统一的置信序列(CS),用于从有限观测值中估算未知平均值的经典问题。我们提出了一种衍生浓度界限的一般方法,可以看作是著名的切尔诺夫方法的概括(和改进)。它的核心是基于推导一类新的复合非负胸腔,通过投注和混合方法与测试的连接很强。我们展示了如何将这些想法扩展到无需更换的情况下,这是另一个经过深入研究的问题。在所有情况下,我们的界限都适应未知的差异,并且基于Hoeffding或经验的Bernstein不平等及其最近的Supermartingale概括,经验上大大优于现有方法。简而言之,我们为四个基本问题建立了一个新的最先进的问题:在有或没有替换的情况下进行采样时,CS和CI进行有限的手段。
translated by 谷歌翻译
Learning curves provide insight into the dependence of a learner's generalization performance on the training set size. This important tool can be used for model selection, to predict the effect of more training data, and to reduce the computational complexity of model training and hyperparameter tuning. This review recounts the origins of the term, provides a formal definition of the learning curve, and briefly covers basics such as its estimation. Our main contribution is a comprehensive overview of the literature regarding the shape of learning curves. We discuss empirical and theoretical evidence that supports well-behaved curves that often have the shape of a power law or an exponential. We consider the learning curves of Gaussian processes, the complex shapes they can display, and the factors influencing them. We draw specific attention to examples of learning curves that are ill-behaved, showing worse learning performance with more training data. To wrap up, we point out various open problems that warrant deeper empirical and theoretical investigation. All in all, our review underscores that learning curves are surprisingly diverse and no universal model can be identified.
translated by 谷歌翻译