一系列不受限制的在线凸优化中的作品已经调查了同时调整比较器的规范$ u $和梯度的最大规范$ g $的可能性。在完全的一般性中,已知匹配的上限和下界表明,这是不可避免的$ g u^3 $的不可避免的成本,当$ g $或$ u $提前知道时,这是不需要的。令人惊讶的是,Kempka等人的最新结果。 (2019年)表明,在特定情况下,不需要这样的适应性价格,例如$ -Lipschitz损失(例如铰链损失)。我们通过表明我们专门研究任何其他常见的在线学习损失,我们的结果涵盖了日志损失,(线性和非参数)逻辑回归,我们实际上从来没有任何代价来为适应性支付的代价,从而跟进这一观察结果,我们会跟进这一观察结果。方形损耗预测,以及(线性和非参数)最小二乘回归。我们还通过提供对$ U $的明确依赖的下限来填补文献中的几个空白。在所有情况下,我们都会获得无标度算法,这些算法在数据恢复下是合理的不变。我们的一般目标是在不关心计算效率的情况下建立可实现的速率,但是对于线性逻辑回归,我们还提供了一种适应性方法,该方法与Agarwal等人的最新非自适应算法一样有效。 (2021)。
translated by 谷歌翻译
我们扩展并结合了一些文献的工具,以设计快速,自适应,随时和无规模的在线学习算法。无尺寸的遗憾界限必须以最大损失线性缩放,既朝向大损失,缺乏较小亏损。自适应遗憾界限表明,算法可以利用易于数据,并且可能具有恒定的遗憾。我们寻求开发快速算法,依赖于尽可能少的参数,特别是它们应该是随时随地的,因此不依赖于时间范围。我们的第一和主要工具,IsoTuning是平衡遗憾权衡的想法的概括。我们开发了一套工具来轻松设计和分析这些学习率,并表明它们自动适应遗憾(无论是常量,$ O(\ log t)$,$ o(\ sqrt {t})$,在Hindsight的最佳学习率的因子2中,对于相同的观察量的因子2中。第二种工具是在线校正,其允许我们获得许多算法的中心界限,以防止当域太大或仅部分约束时遗憾地被空隙。最后一个工具null更新,防止算法执行过多的更大的更新,这可能导致无限的后悔,甚至无效更新。我们使用这些工具开发一般理论并将其应用于几种标准算法。特别是,我们(几乎完全)恢复对无限域的FTRL的小损失的适应性,设计和证明无镜面下降的无缝的自适应保证(至少当Bregman发散在其第二个参数中凸出),延伸Adapt-ML-PROSIA令无规模的保证,并为Prod,Adahedge,Boa和软贝内斯提供了其他几个小贡献。
translated by 谷歌翻译
我们在对数损失下引入条件密度估计的过程,我们调用SMP(样本Minmax预测器)。该估算器最大限度地减少了统计学习的新一般过度风险。在标准示例中,此绑定量表为$ d / n $,$ d $ d $模型维度和$ n $ sample大小,并在模型拼写条目下批判性仍然有效。作为一个不当(超出型号)的程序,SMP在模型内估算器(如最大似然估计)的内部估算器上,其风险过高的风险降低。相比,与顺序问题的方法相比,我们的界限删除了SubOltimal $ \ log n $因子,可以处理无限的类。对于高斯线性模型,SMP的预测和风险受到协变量的杠杆分数,几乎匹配了在没有条件的线性模型的噪声方差或近似误差的条件下匹配的最佳风险。对于Logistic回归,SMP提供了一种非贝叶斯方法来校准依赖于虚拟样本的概率预测,并且可以通过解决两个逻辑回归来计算。它达到了$ O的非渐近风险((d + b ^ 2r ^ 2)/ n)$,其中$ r $绑定了特征的规范和比较参数的$ B $。相比之下,在模型内估计器内没有比$ \ min达到更好的速率({b r} / {\ sqrt {n}},{d e ^ {br} / {n})$。这为贝叶斯方法提供了更实用的替代方法,这需要近似的后部采样,从而部分地解决了Foster等人提出的问题。 (2018)。
translated by 谷歌翻译
我们考虑使用$ K $臂的随机匪徒问题,每一个都与$ [m,m] $范围内支持的有限分布相关。我们不认为$ [m,m] $是已知的范围,并表明学习此范围有成本。确实,出现了与分销相关和无分配后悔界限之间的新权衡,这阻止了同时实现典型的$ \ ln t $和$ \ sqrt {t} $ bunds。例如,仅当与分布相关的遗憾界限至少属于$ \ sqrt {t} $的顺序时,才能实现$ \ sqrt {t} $}无分布遗憾。我们展示了一项策略,以实现新的权衡表明的遗憾。
translated by 谷歌翻译
当在未知约束集中任意变化的分布中生成数据时,我们会考虑使用专家建议的预测。这种半反向的设置包括(在极端)经典的I.I.D.设置时,当未知约束集限制为单身人士时,当约束集是所有分布的集合时,不受约束的对抗设置。对冲状态中,对冲算法(长期以来已知是最佳的最佳速率(速率))最近被证明是对I.I.D.的最佳最小值。数据。在这项工作中,我们建议放松I.I.D.通过在约束集的所有自然顺序上寻求适应性来假设。我们在各个级别的Minimax遗憾中提供匹配的上限和下限,表明确定性学习率的对冲在极端之外是次优的,并证明人们可以在各个级别的各个层面上都能适应Minimax的遗憾。我们使用以下规范化领导者(FTRL)框架实现了这种最佳适应性,并采用了一种新型的自适应正则化方案,该方案隐含地缩放为当前预测分布的熵的平方根,而不是初始预测分布的熵。最后,我们提供了新的技术工具来研究FTRL沿半逆转频谱的统计性能。
translated by 谷歌翻译
我们研究了非参数在线回归中的快速收敛速度,即遗憾的是关于具有有界复杂度的任意函数类来定义后悔。我们的贡献是两倍: - 在绝对损失中的非参数网上回归的可实现设置中,我们提出了一种随机适当的学习算法,该算法在假设类的顺序脂肪破碎尺寸方面获得了近乎最佳的错误。在与一类Littlestone维度$ D $的在线分类中,我们的绑定减少到$ d \ cdot {\ rm poly} \ log t $。这结果回答了一个问题,以及适当的学习者是否可以实现近乎最佳错误的界限;以前,即使在线分类,绑定的最知名错误也是$ \ tilde o(\ sqrt {dt})$。此外,对于真实值(回归)设置,在这项工作之前,界定的最佳错误甚至没有以不正当的学习者所知。 - 使用上述结果,我们展示了Littlestone维度$ D $的一般总和二进制游戏的独立学习算法,每个玩家达到后悔$ \ tilde o(d ^ {3/4} \ cdot t ^ {1 / 4})$。该结果概括了Syrgkanis等人的类似结果。 (2015)谁表明,在有限的游戏中,最佳遗憾可以从普通的o(\ sqrt {t})$中的$ o(\ sqrt {t})为游戏设置中的$ o(t ^ {1/4})$。要建立上述结果,我们介绍了几种新技术,包括:分层聚合规则,以实现对实际类别的最佳错误,Hanneke等人的适当在线可实现学习者的多尺度扩展。 (2021),一种方法来表明这种非参数学习算法的输出是稳定的,并且证明Minimax定理在所有在线学习游戏中保持。
translated by 谷歌翻译
分位数(更普遍,KL)遗憾的界限,例如由癌症(Chaudhuri,Freund和Hsu 2009)及其变体实现的界限,放松了竞争最佳个别专家的目标,只能争夺大多数专家对抗性数据。最近,通过考虑可能既完全对抗或随机(i.i.D.),半对抗拉利范式(Bilodeau,Negrea和Roy 2020)提供了对抗性在线学习的替代放松。我们使用FTRL与单独的,新颖的根对数常规常规程序一起实现SIMIMAX最佳遗憾,这两者都可以解释为QuanchEdge的屈服变体。我们扩展了现有的KL遗憾的上限,统一地持有目标分布,可能是具有任意前锋的不可数专家课程;在有限的专家课程(紧密)上为Simitile遗憾提供第一个全信息下限;并为半逆势范式提供适应性最低的最低限度最佳算法,其适应真实,未知的约束更快,导致在现有方法上均匀改进遗憾。
translated by 谷歌翻译
我们解决了经典专家问题的长期“不可能的调整”问题,并表明,实际上可能实现后悔$ o \ lex(\ sqrt {(\ ln d)\ sum_t \ ell_ {t,i} ^ 2} \ \右)同时为所有专家$ i $ t-$-t-$ -round $ d $ -expert问题在哪里$ \ ell_ {t,i} $是专家$ i $的损失$ t $ 。我们的算法基于镜像血迹框架,具有校正项和加权熵规范器。虽然自然,但之前尚未研究该算法,并且需要仔细分析。对于任何预测向量$ M_T,我们还概括了refton to $ o reft(\ sqrt {(\ ln d)\ sum_t(\ ell_ {t,i})^ 2} \右)$ $ Cylayer通过选择不同的$ M_T $来收到学习者,并恢复或改善许多现有结果。此外,我们使用相同的框架来创建一个组合一组基础算法的主算法,并学习最好的一个开销。我们的主人的新保证使我们能够为专家问题提供许多新的结果,并且更广泛的在线线性优化。
translated by 谷歌翻译
我们考虑非静止在线凸优化的框架,其中学习者寻求控制其动态遗憾,免于任意比较器序列。当损耗函数强烈凸或exy-yshave时,我们证明了强烈的自适应(SA)算法可以被视为在比较器序列的路径变化$ V_T $的路径变化中控制动态遗憾的原则方式。具体来说,我们展示了SA算法享受$ \ tilde o(\ sqrt {tv_t} \ vee \ log t)$和$ \ tilde o(\ sqrt {dtv_t} \ vee d \ log t)$动态遗憾强烈凸Exp-Trowave损失分别没有APRIORI $ v_t $。本发明进一步展示了原理方法的多功能性,在与高斯内核的界限线性预测器和在线回归的环境中进一步证明了原则方法。在一个相关的环境下,纸张的第二个组件解决了Zhdanov和Kalnishkan(2010)提出的一个开放问题,涉及与平方误差损失的在线内核回归。我们在一定处罚后悔的新下限,该遗憾地建立了在线内核Ridge回归(KRR)的近极低最低限度。我们的下限可以被视为vovk(2001)中派生的rkhs扩展,以便在有限维中在线线性回归。
translated by 谷歌翻译
我们考虑随机环境中在线线性回归的问题。我们派生了在线岭回归和前向算法的高概率遗憾。这使我们能够更准确地比较在线回归算法并消除有界观测和预测的假设。我们的研究由于其增强的界限和鲁棒性对正则化参数而代替脊,所以提出了前向算法的倡导者。此外,我们解释了如何将其集成在涉及线性函数近似的算法中以消除界限假设,而不会恶化理论界限。我们在线性强盗设置展示了这种修改,其中它产生了改进的遗憾范围。最后,我们提供数字实验来说明我们的结果并赞同我们的直觉。
translated by 谷歌翻译
在线学习中,随机数据和对抗性数据是两个广泛研究的设置。但是许多优化任务都不是I.I.D.也不完全对抗,这使得对这些极端之间的世界有更好的理论理解具有根本的利益。在这项工作中,我们在在随机I.I.D.之间插值的环境中建立了在线凸优化的新颖遗憾界限。和完全的对抗损失。通过利用预期损失的平滑度,这些边界用梯度的方差取代对最大梯度长度的依赖,这是以前仅以线性损失而闻名的。此外,它们削弱了I.I.D.假设通过允许对抗中毒的回合,以前在专家和强盗设置中考虑过。我们的结果将其扩展到在线凸优化框架。在完全I.I.D.中情况,我们的界限与随机加速的结果相匹配,并且在完全对抗的情况下,它们优雅地恶化以符合Minimax的遗憾。我们进一步提供了下限,表明所有中级方案的遗憾上限都很紧张,从随机方差和损失梯度的对抗变异方面。
translated by 谷歌翻译
我们在非静止环境中调查在线凸优化,然后选择\ emph {动态后悔}作为性能测量,定义为在线算法产生的累积损失与任何可行比较器序列之间的差异。让$ t $是$ p_t $ be的路径长度,基本上反映了环境的非平稳性,最先进的动态遗憾是$ \ mathcal {o}(\ sqrt {t( 1 + p_t)})$。虽然这一界限被证明是凸函数最佳的最低限度,但在本文中,我们证明可以进一步提高一些简单的问题实例的保证,特别是当在线功能平滑时。具体而言,我们提出了新的在线算法,可以利用平滑度并替换动态遗憾的$ t $替换依据\ {问题依赖性}数量:损耗函数梯度的变化,比较器序列的累积损失,以及比较器序列的累积损失最低术语的最低限度。这些数量是大多数$ \ mathcal {o}(t)$,良性环境中可能更小。因此,我们的结果适应了问题的内在难度,因为边界比现有结果更严格,以便在最坏的情况下保证相同的速率。值得注意的是,我们的算法只需要\ emph {一个}渐变,这与开发的方法共享相同的渐变查询复杂性,以优化静态遗憾。作为进一步的应用,我们将来自全信息设置的结果扩展到具有两点反馈的强盗凸优化,从而达到此类强盗任务的第一个相关的动态遗憾。
translated by 谷歌翻译
我们研究了批量线性上下文匪徒的最佳批量遗憾权衡。对于任何批次数$ M $,操作次数$ k $,时间范围$ t $和维度$ d $,我们提供了一种算法,并证明了其遗憾的保证,这是由于技术原因,具有两阶段表达作为时间的时间$ t $ grose。我们还证明了一个令人奇迹的定理,令人惊讶地显示了在问题参数的“问题参数”中的两相遗憾(最高〜对数因子)的最优性,因此建立了确切的批量后悔权衡。与最近的工作\ citep {ruan2020linear}相比,这表明$ m = o(\ log \ log t)$批次实现无需批处理限制的渐近最佳遗憾的渐近最佳遗憾,我们的算法更简单,更易于实际实现。此外,我们的算法实现了所有$ t \ geq d $的最佳遗憾,而\ citep {ruan2020linear}要求$ t $大于$ d $的不切实际的大多项式。沿着我们的分析,我们还证明了一种新的矩阵集中不平等,依赖于他们的动态上限,这是我们的知识,这是其文学中的第一个和独立兴趣。
translated by 谷歌翻译
在随机上下文的强盗设置中,对遗憾最小化算法进行了广泛的研究,但是他们的实例最少的最佳武器识别对应物仍然很少研究。在这项工作中,我们将重点关注$(\ epsilon,\ delta)$ - $ \ textit {pac} $设置:给定策略类$ \ pi $,学习者的目标是返回策略的目标, $ \ pi \ in \ pi $的预期奖励在最佳政策的$ \ epsilon $之内,概率大于$ 1- \ delta $。我们表征了第一个$ \ textit {实例依赖性} $ PAC样品通过数量$ \ rho _ {\ pi} $的上下文匪徒的复杂性,并根据$ \ rho _ {\ pi} $提供匹配的上和下限不可知论和线性上下文最佳武器标识设置。我们表明,对于遗憾的最小化和实例依赖性PAC而言,无法同时最小化算法。我们的主要结果是一种新的实例 - 最佳和计算有效算法,该算法依赖于多项式呼叫对Argmax Oracle的调用。
translated by 谷歌翻译
我们开发了一个修改的在线镜下降框架,该框架适用于在无界域中构建自适应和无参数的算法。我们利用这项技术来开发第一个不受限制的在线线性优化算法,从而达到了最佳的动态遗憾,我们进一步证明,基于以下规范化领导者的自然策略无法取得相似的结果。我们还将镜像下降框架应用于构建新的无参数隐式更新,以及简化和改进的无限规模算法。
translated by 谷歌翻译
统计中的一个经典问题是对样品对随机变量的预期估计。这引起了导出浓度不平等和置信序列的紧密联系的问题,即随着时间的推移均匀保持的置信区间。Jun和Orabona [Colt'19]已经展示了如何轻松将在线投注算法的遗憾保证转化为时均匀的集中度不平等。在本文中,我们表明我们可以进一步发展:我们表明,普遍投资组合算法的遗憾引起了新的隐式时间均匀浓度和最先进的经验计算出的置信序列。特别是,即使使用单个样本,我们的数值获得的置信序列也永远不会空置,并满足迭代对数定律。
translated by 谷歌翻译
获取一阶遗憾界限 - 遗憾的界限不是作为最坏情况,但有一些衡量给定实例的最佳政策的性能 - 是连续决策的核心问题。虽然这种界限存在于许多设置中,但它们在具有大状态空间的钢筋学习中被证明是难以捉摸的。在这项工作中,我们解决了这个差距,并表明可以将遗憾的缩放作为$ \ mathcal {o}(\ sqrt {v_1 ^ \ star})$中的钢筋学习,即用大状态空间,即线性MDP设置。这里$ v_1 ^ \ star $是最佳政策的价值,$ k $是剧集的数量。我们证明基于最小二乘估计的现有技术不足以获得该结果,而是基于强大的Catoni平均估计器制定一种新的稳健自归一化浓度,其可能具有独立兴趣。
translated by 谷歌翻译
我们考虑$ k $武装的随机土匪,并考虑到$ t $ t $的累积后悔界限。我们对同时获得最佳订单$ \ sqrt {kt} $的策略感兴趣,并与发行依赖的遗憾相关,即与$ \ kappa \ ln t $相匹配,该遗憾是最佳的。和Robbins(1985)以及Burnetas和Katehakis(1996),其中$ \ kappa $是最佳问题依赖性常数。这个常数的$ \ kappa $取决于所考虑的模型$ \ Mathcal {d} $(武器上可能的分布家族)。 M \'Enard and Garivier(2017)提供了在一维指数式家庭给出的模型的参数案例中实现这种双重偏见的策略,而Lattimore(2016,2018)为(Sub)高斯分布的家族而做到了这一点。差异小于$ 1 $。我们将此结果扩展到超过$ [0,1] $的所有分布的非参数案例。我们通过结合Audibert和Bubeck(2009)的MOSS策略来做到这一点,该策略享受了最佳订单$ \ sqrt {kt} $的无分配遗憾,以及Capp \'e等人的KL-UCB策略。 (2013年),我们为此提供了对最佳分布$ \ kappa \ ln t $遗憾的首次分析。我们能够在努力简化证明(以前已知的遗憾界限,因此进行的新分析)时,能够获得这种非参数两次审查结果;因此,本贡献的第二个优点是为基于$ k $武装的随机土匪提供基于索引的策略的经典后悔界限的证明。
translated by 谷歌翻译
我们考虑在线线性优化问题,在每个步骤中,算法在单位球中播放点x_t $,损失$ \ langle c_t,x_t \ rangle $,x_t \ rangle $ for for some成本向量$ c_t $那么透露算法。最近的工作表明,如果算法接收到与$ C_T $之前的invial相关的提示$ h_t $,则它可以达到$ o(\ log t)$的遗憾保证,从而改善标准设置中$ \ theta(\ sqrt {t})$。在这项工作中,我们研究了算法是否真正需要在每次步骤中需要提示的问题。有些令人惊讶的是,我们表明,只需在自然查询模型下只需在$ O(\ SQRT {T})$暗示即可获得$ O(\ log t)$后悔;相比之下,我们还显示$ o(\ sqrt {t})$提示不能优于$ \ omega(\ sqrt {t})$后悔。我们为我们的结果提供了两种应用,以乐观的遗憾界限和弃权问题的乐观遗憾。
translated by 谷歌翻译
本文在动态定价的背景下调查预先存在的离线数据对在线学习的影响。我们在$ t $期间的销售地平线上研究单一产品动态定价问题。每个时段的需求由产品价格根据具有未知参数的线性需求模型确定。我们假设在销售地平线开始之前,卖方已经有一些预先存在的离线数据。离线数据集包含$ N $示例,其中每个标准是由历史价格和相关的需求观察组成的输入输出对。卖方希望利用预先存在的离线数据和顺序在线数据来最大限度地减少在线学习过程的遗憾。我们的特征在于在线学习过程的最佳遗憾的脱机数据的大小,位置和分散的联合效果。具体而言,离线数据的大小,位置和色散由历史样本数量为$ n $,平均历史价格与最佳价格$ \ delta $之间的距离以及历史价格的标准差价Sigma $分别。我们表明最佳遗憾是$ \ widetilde \ theta \ left(\ sqrt {t} \ wedge \ frac {t} {(n \ wedge t)\ delta ^ 2 + n \ sigma ^ 2} \右)$,基于“面对不确定性”原则的“乐观主义”的学习算法,其遗憾是最佳的对数因子。我们的结果揭示了对脱机数据的大小的最佳遗憾率的惊人变换,我们称之为阶段转型。此外,我们的结果表明,离线数据的位置和分散也对最佳遗憾具有内在效果,我们通过逆平面法量化了这种效果。
translated by 谷歌翻译