在不同水平的抽象水平上使用因果模型是科学的重要特征。现有工作已经考虑了因果模型之间正式表达抽象关系的问题。在本文中,我们关注学习抽象的问题。我们首先根据优化一致性度量的优化来正式定义学习问题。然后,我们指出了这种方法的局限性,建议通过对信息丢失的术语进行术语来扩展目标函数。我们建议对信息丢失的具体度量,并说明了其对学习新抽象的贡献。
translated by 谷歌翻译
结构性因果模型(SCM)是处理因果系统的广泛形式主义。最近的研究方向考虑了通过定义SCM之间的地图并施加介入介入一致性的要求,以不同水平的抽象级别正式SCM的问题。本文对迄今为止提出的解决方案进行了审查,重点是SCM之间地图的形式属性,并突出了可以执行这些属性的不同层(结构,分布)。这使我们能够通过选择保证某些属性而不是其他属性来区分可能允许或不允许的抽象家庭。这种理解不仅可以区分因果抽象的提议,而且还可以更加认识,而且还允许根据与特定应用相关的抽象形式定义抽象的定义。
translated by 谷歌翻译
We propose a layered hierarchical architecture called UCLA (Universal Causality Layered Architecture), which combines multiple levels of categorical abstraction for causal inference. At the top-most level, causal interventions are modeled combinatorially using a simplicial category of ordinal numbers. At the second layer, causal models are defined by a graph-type category. The non-random ``surgical" operations on causal structures, such as edge deletion, are captured using degeneracy and face operators from the simplicial layer above. The third categorical abstraction layer corresponds to the data layer in causal inference. The fourth homotopy layer comprises of additional structure imposed on the instance layer above, such as a topological space, which enables evaluating causal models on datasets. Functors map between every pair of layers in UCLA. Each functor between layers is characterized by a universal arrow, which defines an isomorphism between every pair of categorical layers. These universal arrows define universal elements and representations through the Yoneda Lemma, and in turn lead to a new category of elements based on a construction introduced by Grothendieck. Causal inference between each pair of layers is defined as a lifting problem, a commutative diagram whose objects are categories, and whose morphisms are functors that are characterized as different types of fibrations. We illustrate the UCLA architecture using a range of examples, including integer-valued multisets that represent a non-graphical framework for conditional independence, and causal models based on graphs and string diagrams using symmetric monoidal categories. We define causal effect in terms of the homotopy colimit of the nerve of the category of elements.
translated by 谷歌翻译
我们提出了普遍因果关系,这是一个基于类别理论的总体框架,该框架定义了基于因果推理的普遍特性,该属性独立于所使用的基本代表性形式主义。更正式的是,普遍的因果模型被定义为由对象和形态组成的类别,它们代表因果影响,以及进行干预措施(实验)和评估其结果(观察)的结构。函子在类别之间的映射和自然变换映射在相同两个类别的一对函子之间。我们框架中的抽象因果图是使用类别理论的通用构造构建的,包括抽象因果图的限制或共限制,或更普遍的KAN扩展。我们提出了普遍因果推断的两个基本结果。第一个结果称为普遍因果定理(UCT),与图的通用性有关,这些结果被视为函数映射对象和关系从抽象因果图的索引类别到一个实际因果模型,其节点由随机变量标记为实际因果模型和边缘代表功能或概率关系。 UCT指出,任何因果推论都可以以规范的方式表示为代表对象的抽象因果图的共同限制。 UCT取决于滑轮理论的基本结果。第二个结果是因果繁殖特性(CRP),指出对象x对另一个对象y的任何因果影响都可以表示为两个抽象因果图之间的自然转化。 CRP来自Yoneda引理,这是类别理论中最深层的结果之一。 CRP属性类似于复制元素希尔伯特空间中的繁殖属性,该元素是机器学习中内核方法的基础。
translated by 谷歌翻译
也称为(非参数)结构方程模型(SEMS)的结构因果模型(SCM)被广泛用于因果建模目的。特别是,也称为递归SEM的无循环SCMS,形成了一个研究的SCM的良好的子类,概括了因果贝叶斯网络来允许潜在混淆。在本文中,我们调查了更多普通环境中的SCM,允许存在潜在混杂器和周期。我们展示在存在周期中,无循环SCM的许多方便的性质通常不会持有:它们并不总是有解决方案;它们并不总是诱导独特的观察,介入和反事实分布;边缘化并不总是存在,如果存在边缘模型并不总是尊重潜在的投影;他们并不总是满足马尔可夫财产;他们的图表并不总是与他们的因果语义一致。我们证明,对于SCM一般,这些属性中的每一个都在某些可加工条件下保持。我们的工作概括了SCM的结果,迄今为止仅针对某些特殊情况所知的周期。我们介绍了将循环循环设置扩展到循环设置的简单SCM的类,同时保留了许多方便的无环SCM的性能。用本文,我们的目标是为SCM提供统计因果建模的一般理论的基础。
translated by 谷歌翻译
有良好的因果建模框架,但是这些框架需要许多人类领域的专业知识来定义因果变量并执行干预措施。为了使自主代理通过互动经验学习抽象的因果模型,需要扩展和澄清现有的理论基础。现有框架没有关于可变选择 /表示形式的指导,更重要的是,没有迹象表明国家空间的行为政策或物理转换不得将其视为干预措施。本文中概述的框架将动作描述为状态空间的转换,例如由运行策略的代理引起的。这使得以统一的方式描述了微型状态空间的转换及其抽象模型,并说后者何时是垂直 /接地 /自然的。然后,我们介绍(因果)变量,将机制定义为不变的预测因子,并说何时可以将动作视为``手术干预'',从而将因果关系和干预技能学习的目标带入了更清晰的焦点。
translated by 谷歌翻译
基于AI和机器学习的决策系统已在各种现实世界中都使用,包括医疗保健,执法,教育和金融。不再是牵强的,即设想一个未来,自治系统将推动整个业务决策,并且更广泛地支持大规模决策基础设施以解决社会最具挑战性的问题。当人类做出决定时,不公平和歧视的问题普遍存在,并且当使用几乎没有透明度,问责制和公平性的机器做出决定时(或可能会放大)。在本文中,我们介绍了\ textit {Causal公平分析}的框架,目的是填补此差距,即理解,建模,并可能解决决策设置中的公平性问题。我们方法的主要见解是将观察到数据中存在的差异的量化与基本且通常是未观察到的因果机制收集的因果机制的收集,这些机制首先会产生差异,挑战我们称之为因果公平的基本问题分析(FPCFA)。为了解决FPCFA,我们研究了分解差异和公平性的经验度量的问题,将这种变化归因于结构机制和人群的不同单位。我们的努力最终达到了公平地图,这是组织和解释文献中不同标准之间关系的首次系统尝试。最后,我们研究了进行因果公平分析并提出一本公平食谱的最低因果假设,该假设使数据科学家能够评估不同影响和不同治疗的存在。
translated by 谷歌翻译
药物的因果模型已用于分析机器学习系统的安全性方面。但是,识别代理是非平凡的 - 通常只是由建模者假设而没有太多理由来实现因果模型 - 建模失败可能会导致安全分析中的错误。本文提出了对代理商的第一个正式因果定义 - 大约是代理人是制度,如果他们的行为以不同的方式影响世界,则可以改善其政策。由此,我们得出了第一个用于从经验数据中发现代理的因果发现算法,并提供了用于在因果模型和游戏理论影响图之间转换的算法。我们通过解决不正确的因果模型引起的一些混乱来证明我们的方法。
translated by 谷歌翻译
In this review, we discuss approaches for learning causal structure from data, also called causal discovery. In particular, we focus on approaches for learning directed acyclic graphs (DAGs) and various generalizations which allow for some variables to be unobserved in the available data. We devote special attention to two fundamental combinatorial aspects of causal structure learning. First, we discuss the structure of the search space over causal graphs. Second, we discuss the structure of equivalence classes over causal graphs, i.e., sets of graphs which represent what can be learned from observational data alone, and how these equivalence classes can be refined by adding interventional data.
translated by 谷歌翻译
本文介绍了在结构因果模型(SCM)的一般空间上定义的一系列拓扑结构,介绍了因果推断的拓扑学习 - 理论观点。作为框架的说明,我们证明了拓扑因果层次结构定理,表明只有在微薄的SCM集中就可以实现了无实体的假设因果推断。由于弱拓扑结构和统计上可验证假设的开放集之间的已知对应关系,我们的结果表明,原则上的归纳假设足以许可有效的因果推论是统计上无可核实的。类似于无午餐定理的统计推断,目前的结果阐明了因果推断的实质性假设的必然性。我们拓扑方法的额外好处是它很容易容纳具有无限变量的SCM。我们终于建议该框架对探索和评估替代因果归纳的积极项目有所帮助。
translated by 谷歌翻译
我们提出了一个新的因果贡献的概念,它描述了在DAG中目标节点上的节点的“内在”部分。我们显示,在某些情况下,现有的因果量化方法无法完全捕获此概念。通过以上游噪声术语递归地将每个节点写入每个节点,我们将每个节点添加的内部信息分开从其祖先所获得的每个节点添加的内部信息。要将内在信息解释为因果贡献,我们考虑“结构保留干预”,该介绍每个节点随机化,以一种模仿通常依赖父母的方式,也不会扰乱观察到的联合分布。为了获得跨越节点的任意排序的措施,我们提出了基于福利的对称化。我们描述了对方差和熵的贡献分析,但可以类似地定义对其他目标度量的贡献。
translated by 谷歌翻译
我们研究了全球优化因果关系变量的因果关系变量的问题,在该目标变量中可以进行干预措施。这个问题在许多科学领域都引起,包括生物学,运营研究和医疗保健。我们提出了因果熵优化(CEO),该框架概括了因果贝叶斯优化(CBO),以说明所有不确定性来源,包括由因果图结构引起的。首席执行官在因果效应的替代模型中以及用于通过信息理论采集函数选择干预措施的机制中纳入了因果结构的不确定性。所得算法自动交易结构学习和因果效应优化,同时自然考虑观察噪声。对于各种合成和现实世界的结构性因果模型,与CBO相比,CEO可以更快地与全局最佳达到融合,同时还可以学习图形。此外,我们的结构学习和因果优化的联合方法在顺序的结构学习优先方法上改善了。
translated by 谷歌翻译
在使用不同的培训环境展示时,获得机器学习任务的可推广解决方案的一种方法是找到数据的\ textit {不变表示}。这些是协变量的表示形式,以至于表示形式的最佳模型在培训环境之间是不变的。在线性结构方程模型(SEMS)的背景下,不变表示可能使我们能够以分布范围的保证(即SEM中的干预措施都有牢固的模型学习模型。为了解决{\ em有限示例}设置中不变的表示问题,我们考虑$ \ epsilon $ approximate不变性的概念。我们研究以下问题:如果表示给定数量的培训干预措施大致相当不变,那么在更大的看不见的SEMS集合中,它是否会继续大致不变?这种较大的SEM集合是通过参数化的干预措施来生成的。受PAC学习的启发,我们获得了有限样本的分布概括,保证了近似不变性,该概述\ textit {概率}在没有忠实假设的线性SEMS家族上。我们的结果表明,当干预站点仅限于恒定大小的子集的恒定限制节点的恒定子集时,界限不会在环境维度上扩展。我们还展示了如何将结果扩展到结合潜在变量的线性间接观察模型。
translated by 谷歌翻译
我们考虑代表代理模型的问题,该模型使用我们称之为CSTREES的阶段树模型的适当子类对离散数据编码离散数据的原因模型。我们表明,可以通过集合表达CSTREE编码的上下文专用信息。由于并非所有阶段树模型都承认此属性,CSTREES是一个子类,可提供特定于上下文的因果信息的透明,直观和紧凑的表示。我们证明了CSTREEES承认全球性马尔可夫属性,它产生了模型等价的图形标准,概括了Verma和珍珠的DAG模型。这些结果延伸到一般介入模型设置,使CSTREES第一族的上下文专用模型允许介入模型等价的特征。我们还为CSTREE的最大似然估计器提供了一种封闭式公式,并使用它来表示贝叶斯信息标准是该模型类的本地一致的分数函数。在模拟和实际数据上分析了CSTHEELE的性能,在那里我们看到与CSTREELE而不是一般上演树的建模不会导致预测精度的显着损失,同时提供了特定于上下文的因果信息的DAG表示。
translated by 谷歌翻译
最近对DataSet Shift的兴趣,已经产生了许多方法,用于查找新的未经,无奈环境中预测的不变分布。然而,这些方法考虑不同类型的班次,并且已经在不同的框架下开发,从理论上难以分析解决方案如何与稳定性和准确性不同。采取因果图形视图,我们使用灵活的图形表示来表达各种类型的数据集班次。我们表明所有不变的分布对应于图形运算符的因果层次结构,该图形运算符禁用负责班次的图表中的边缘。层次结构提供了一个常见的理论基础,以便理解可以实现转移的何时以及如何实现稳定性,并且在稳定的分布可能不同的情况下。我们使用它来建立跨环境最佳性能的条件,并导出找到最佳稳定分布的新算法。使用这种新的视角,我们经验证明了最低限度和平均性能之间的权衡。
translated by 谷歌翻译
我们基于从多个数据集的合并信息介绍了一种反事实推断的方法。我们考虑了统计边际问题的因果重新重新制定:鉴于边际结构因果模型(SCM)的集合在不同但重叠的变量集上,请确定与边际相反一致的关节SCMS集。我们使用响应函数配方对分类SCM进行了形式化这种方法,并表明它降低了允许的边际和关节SCM的空间。因此,我们的工作通过其他变量突出了一种通过其他变量的新模式,与统计数据相反。
translated by 谷歌翻译
数据科学任务可以被视为了解数据的感觉或测试关于它的假设。从数据推断的结论可以极大地指导我们做出信息做出决定。大数据使我们能够与机器学习结合执行无数的预测任务,例如鉴定患有某种疾病的高风险患者并采取可预防措施。然而,医疗保健从业者不仅仅是仅仅预测的内容 - 它们也对输入特征和临床结果之间的原因关系感兴趣。了解这些关系将有助于医生治疗患者并有效降低风险。通常通过随机对照试验鉴定因果关系。当科学家和研究人员转向观察研究并试图吸引推论时,这种试验通常是不可行的。然而,观察性研究也可能受到选择和/或混淆偏差的影响,这可能导致错误的因果结论。在本章中,我们将尝试突出传统机器学习和统计方法中可能出现的一些缺点,以分析观察数据,特别是在医疗保健数据分析域中。我们将讨论因果化推理和方法,以发现医疗领域的观测研究原因。此外,我们将展示因果推断在解决某些普通机器学习问题等中的应用,例如缺少数据和模型可运输性。最后,我们将讨论将加强学习与因果关系相结合的可能性,作为反击偏见的一种方式。
translated by 谷歌翻译
A significant body of research in the data sciences considers unfair discrimination against social categories such as race or gender that could occur or be amplified as a result of algorithmic decisions. Simultaneously, real-world disparities continue to exist, even before algorithmic decisions are made. In this work, we draw on insights from the social sciences brought into the realm of causal modeling and constrained optimization, and develop a novel algorithmic framework for tackling pre-existing real-world disparities. The purpose of our framework, which we call the "impact remediation framework," is to measure real-world disparities and discover the optimal intervention policies that could help improve equity or access to opportunity for those who are underserved with respect to an outcome of interest. We develop a disaggregated approach to tackling pre-existing disparities that relaxes the typical set of assumptions required for the use of social categories in structural causal models. Our approach flexibly incorporates counterfactuals and is compatible with various ontological assumptions about the nature of social categories. We demonstrate impact remediation with a hypothetical case study and compare our disaggregated approach to an existing state-of-the-art approach, comparing its structure and resulting policy recommendations. In contrast to most work on optimal policy learning, we explore disparity reduction itself as an objective, explicitly focusing the power of algorithms on reducing inequality.
translated by 谷歌翻译
反事实推断是一种强大的工具,能够解决备受瞩目的领域中具有挑战性的问题。要进行反事实推断,需要了解潜在的因果机制。但是,仅凭观察和干预措施就不能独特地确定因果机制。这就提出了一个问题,即如何选择因果机制,以便在给定领域中值得信赖。在具有二进制变量的因果模型中已经解决了这个问题,但是分类变量的情况仍未得到解答。我们通过为具有分类变量的因果模型引入反事实排序的概念来应对这一挑战。为了学习满足这些约束的因果机制,并对它们进行反事实推断,我们引入了深层双胞胎网络。这些是深层神经网络,在受过训练的情况下,可以进行双网络反事实推断 - 一种替代绑架,动作和预测方法的替代方法。我们从经验上测试了来自医学,流行病学和金融的多种现实世界和半合成数据的方法,并报告了反事实概率的准确估算,同时证明了反事实订购时不执行反事实的问题。
translated by 谷歌翻译
估计平均因果效应的理想回归(如果有)是什么?我们在离散协变量的设置中研究了这个问题,从而得出了各种分层估计器的有限样本方差的表达式。这种方法阐明了许多广泛引用的结果的基本统计现象。我们的博览会结合了研究因果效应估计的三种不同的方法论传统的见解:潜在结果,因果图和具有加性误差的结构模型。
translated by 谷歌翻译