在使用不同的培训环境展示时,获得机器学习任务的可推广解决方案的一种方法是找到数据的\ textit {不变表示}。这些是协变量的表示形式,以至于表示形式的最佳模型在培训环境之间是不变的。在线性结构方程模型(SEMS)的背景下,不变表示可能使我们能够以分布范围的保证(即SEM中的干预措施都有牢固的模型学习模型。为了解决{\ em有限示例}设置中不变的表示问题,我们考虑$ \ epsilon $ approximate不变性的概念。我们研究以下问题:如果表示给定数量的培训干预措施大致相当不变,那么在更大的看不见的SEMS集合中,它是否会继续大致不变?这种较大的SEM集合是通过参数化的干预措施来生成的。受PAC学习的启发,我们获得了有限样本的分布概括,保证了近似不变性,该概述\ textit {概率}在没有忠实假设的线性SEMS家族上。我们的结果表明,当干预站点仅限于恒定大小的子集的恒定限制节点的恒定子集时,界限不会在环境维度上扩展。我们还展示了如何将结果扩展到结合潜在变量的线性间接观察模型。
translated by 谷歌翻译
域的概括(DG)通过利用来自多个相关分布或域的标记培训数据在看不见的测试分布上表现良好的预测因子。为了实现这一目标,标准公式优化了所有可能域的最差性能。但是,由于最糟糕的转变在实践中的转变极不可能,这通常会导致过度保守的解决方案。实际上,最近的一项研究发现,没有DG算法在平均性能方面优于经验风险最小化。在这项工作中,我们认为DG既不是最坏的问题,也不是一个普通的问题,而是概率问题。为此,我们为DG提出了一个概率框架,我们称之为可能的域概括,其中我们的关键想法是在训练期间看到的分配变化应在测试时告诉我们可能的变化。为了实现这一目标,我们将培训和测试域明确关联为从同一基础元分布中获取的,并提出了一个新的优化问题 - 分数风险最小化(QRM) - 要求该预测因子以很高的概率概括。然后,我们证明了QRM:(i)产生的预测因子,这些预测因素将具有所需概率的新域(给定足够多的域和样本); (ii)随着概括的所需概率接近一个,恢复因果预测因子。在我们的实验中,我们引入了针对DG的更全面的以分位数评估协议,并表明我们的算法在真实和合成数据上的最先进基准都优于最先进的基准。
translated by 谷歌翻译
如今,收集来自不同环境的特征和响应对的观察已经变得越来越普遍。结果,由于分布变化,必须将学习的预测变量应用于具有不同分布的数据。一种原则性的方法是采用结构性因果模型来描述培训和测试模型,遵循不变性原则,该原理说响应的条件分布鉴于其预测因素在整个环境中保持不变。但是,当响应干预时,在实际情况下可能会违反该原则。一个自然的问题是,是否仍然可以识别其他形式的不变性来促进在看不见的环境中的预测。为了阐明这种具有挑战性的情况,我们引入了不变的匹配属性(IMP),这是通过附加功能捕获干预措施的明确关系。这导致了一种替代形式的不变性形式,该形式能够对响应进行统一的一般干预措施。我们在离散环境设置和连续环境设置下分析了我们方法的渐近概括误差,在该设置中,通过将其与半磁头变化的系数模型相关联来处理连续情况。我们提出的算法与各种实验环境中的现有方法相比表现出竞争性能。
translated by 谷歌翻译
本文考虑了从观察和介入数据估算因果导向的非循环图中未知干预目标的问题。重点是线性结构方程模型(SEM)中的软干预。目前对因果结构的方法学习使用已知的干预目标或使用假设测试来发现即使是线性SEM也可以发现未知的干预目标。这严重限制了它们的可扩展性和样本复杂性。本文提出了一种可扩展和高效的算法,始终识别所有干预目标。关键思想是从与观察和介入数据集相关联的精度矩阵之间的差异来估计干预站点。它涉及反复估计不同亚空间子集中的这些站点。该算法的算法还可用于将给定的观察马尔可夫等效类更新为介入马尔可夫等价类。在分析地建立一致性,马尔可夫等效和采样复杂性。最后,实际和合成数据的仿真结果展示了所提出的可扩展因果结构恢复方法的增益。算法的实现和重现仿真结果的代码可用于\ url {https://github.com/bvarici/intervention- istimation}。
translated by 谷歌翻译
We consider the problem of recovering the causal structure underlying observations from different experimental conditions when the targets of the interventions in each experiment are unknown. We assume a linear structural causal model with additive Gaussian noise and consider interventions that perturb their targets while maintaining the causal relationships in the system. Different models may entail the same distributions, offering competing causal explanations for the given observations. We fully characterize this equivalence class and offer identifiability results, which we use to derive a greedy algorithm called GnIES to recover the equivalence class of the data-generating model without knowledge of the intervention targets. In addition, we develop a novel procedure to generate semi-synthetic data sets with known causal ground truth but distributions closely resembling those of a real data set of choice. We leverage this procedure and evaluate the performance of GnIES on synthetic, real, and semi-synthetic data sets. Despite the strong Gaussian distributional assumption, GnIES is robust to an array of model violations and competitive in recovering the causal structure in small- to large-sample settings. We provide, in the Python packages "gnies" and "sempler", implementations of GnIES and our semi-synthetic data generation procedure.
translated by 谷歌翻译
最近,提出了不变的风险最小化(IRM)作为解决分布外(OOD)概括的有前途的解决方案。但是,目前尚不清楚何时应优先于广泛的经验风险最小化(ERM)框架。在这项工作中,我们从样本复杂性的角度分析了这两个框架,从而迈出了一个坚定的一步,以回答这个重要问题。我们发现,根据数据生成机制的类型,这两种方法可能具有有限样本和渐近行为。例如,在协变量偏移设置中,我们看到两种方法不仅达到了相同的渐近解决方案,而且具有相似的有限样本行为,没有明显的赢家。但是,对于其他分布变化,例如涉及混杂因素或反毒物变量的变化,两种方法到达不同的渐近解决方案,在这些方法中,保证IRM可以接近有限样品状态中所需的OOD溶液,而ERM甚至偶然地偏向于渐近。我们进一步研究了不同因素(环境的数量,模型的复杂性和IRM惩罚权重)如何影响IRM的样本复杂性与其距离OOD溶液的距离有关
translated by 谷歌翻译
In this review, we discuss approaches for learning causal structure from data, also called causal discovery. In particular, we focus on approaches for learning directed acyclic graphs (DAGs) and various generalizations which allow for some variables to be unobserved in the available data. We devote special attention to two fundamental combinatorial aspects of causal structure learning. First, we discuss the structure of the search space over causal graphs. Second, we discuss the structure of equivalence classes over causal graphs, i.e., sets of graphs which represent what can be learned from observational data alone, and how these equivalence classes can be refined by adding interventional data.
translated by 谷歌翻译
当用于训练模型的源数据与用于测试模型的目标数据不同时,域适应(DA)作为统计机器学习的重要问题。 DA最近的进展主要是应用驱动的,并且主要依赖于源和目标数据的常见子空间的想法。要了解DA方法的经验成功和失败,我们通过结构因果模型提出了理论框架,可以实现DA方法的预测性能的分析和比较。此框架还允许我们逐项逐项列出DA方法具有低目标错误所需的假设。此外,通过我们理论的见解,我们提出了一种名为CIRM的新DA方法,当协变量和标签分布都在目标数据中被扰乱时,胜过现有的DA方法。我们补充了广泛的模拟的理论分析,以表明设计了设计的必要性。还提供可重复的合成和实际数据实验,以说明当我们理论中的某些假设的某些问题被侵犯时DA方法的强度和弱点。
translated by 谷歌翻译
本文研究了在因果图形模型中设计最佳干预措施序列的问题,以最大程度地减少对事后最佳干预的累积后悔。自然,这是一个因果匪徒问题。重点是线性结构方程模型(SEM)和软干预措施的因果匪徒。假定该图的结构是已知的,并且具有$ n $节点。每个节点都假定使用两种线性机制,一种软干预和一种观察性,产生了$ 2^n $可能的干预措施。现有的因果匪徒算法假设,至少完全指定了奖励节点父母的介入分布。但是,有$ 2^n $这样的分布(一个与每个干预措施相对应),即使在中等尺寸的图中也变得越来越高。本文分配了知道这些分布的假设。提出了两种算法,用于常见者(基于UCB)和贝叶斯(基于汤普森采样)的设置。这些算法的关键思想是避免直接估计$ 2^n $奖励分布,而是估算完全指定SEMS($ n $线性)的参数,并使用它们来计算奖励。在这两种算法中,在噪声和参数空间的有界假设下,累积遗憾的是$ \ tilde {\ cal o}(((2d)^l l \ sqrt {t})$,其中$ d $是图的最高度和$ l $是其最长因果路径的长度。
translated by 谷歌翻译
也称为(非参数)结构方程模型(SEMS)的结构因果模型(SCM)被广泛用于因果建模目的。特别是,也称为递归SEM的无循环SCMS,形成了一个研究的SCM的良好的子类,概括了因果贝叶斯网络来允许潜在混淆。在本文中,我们调查了更多普通环境中的SCM,允许存在潜在混杂器和周期。我们展示在存在周期中,无循环SCM的许多方便的性质通常不会持有:它们并不总是有解决方案;它们并不总是诱导独特的观察,介入和反事实分布;边缘化并不总是存在,如果存在边缘模型并不总是尊重潜在的投影;他们并不总是满足马尔可夫财产;他们的图表并不总是与他们的因果语义一致。我们证明,对于SCM一般,这些属性中的每一个都在某些可加工条件下保持。我们的工作概括了SCM的结果,迄今为止仅针对某些特殊情况所知的周期。我们介绍了将循环循环设置扩展到循环设置的简单SCM的类,同时保留了许多方便的无环SCM的性能。用本文,我们的目标是为SCM提供统计因果建模的一般理论的基础。
translated by 谷歌翻译
最近的学习不变(因果)特征(OOD)概括最近引起了广泛的关注,在建议中不变风险最小化(IRM)(Arjovsky等,2019)是一个显着的解决方案。尽管其对线性回归的理论希望,但在线性分类问题中使用IRM的挑战仍然存在(Rosenfeld等,2020; Nagarajan等,2021)。沿着这一行,最近的一项研究(Arjovsky等人,2019年)迈出了第一步,并提出了基于信息瓶颈的不变风险最小化的学习原理(IB-imm)。在本文中,我们首先表明(Arjovsky等人,2019年)使用不变特征的支持重叠的关键假设对于保证OOD泛化是相当强大的,并且在没有这种假设的情况下仍然可以实现最佳解决方案。为了进一步回答IB-IRM是否足以在线性分类问题中学习不变特征的问题,我们表明IB-IRM在两种情况下仍将失败,无论是否不变功能捕获有关标签的所有信息。为了解决此类失败,我们提出了一个\ textit {基于反事实的信息瓶颈(CSIB)}学习算法,该算法可恢复不变的功能。即使从单个环境访问数据时,提出的算法也可以工作,并且在理论上对二进制和多类问题都具有一致的结果。我们对三个合成数据集进行了经验实验,以验证我们提出的方法的功效。
translated by 谷歌翻译
我们考虑代表代理模型的问题,该模型使用我们称之为CSTREES的阶段树模型的适当子类对离散数据编码离散数据的原因模型。我们表明,可以通过集合表达CSTREE编码的上下文专用信息。由于并非所有阶段树模型都承认此属性,CSTREES是一个子类,可提供特定于上下文的因果信息的透明,直观和紧凑的表示。我们证明了CSTREEES承认全球性马尔可夫属性,它产生了模型等价的图形标准,概括了Verma和珍珠的DAG模型。这些结果延伸到一般介入模型设置,使CSTREES第一族的上下文专用模型允许介入模型等价的特征。我们还为CSTREE的最大似然估计器提供了一种封闭式公式,并使用它来表示贝叶斯信息标准是该模型类的本地一致的分数函数。在模拟和实际数据上分析了CSTHEELE的性能,在那里我们看到与CSTREELE而不是一般上演树的建模不会导致预测精度的显着损失,同时提供了特定于上下文的因果信息的DAG表示。
translated by 谷歌翻译
所有著名的机器学习算法构成了受监督和半监督的学习工作,只有在一个共同的假设下:培训和测试数据遵循相同的分布。当分布变化时,大多数统计模型必须从新收集的数据中重建,对于某些应用程序,这些数据可能是昂贵或无法获得的。因此,有必要开发方法,以减少在相关领域中可用的数据并在相似领域中进一步使用这些数据,从而减少需求和努力获得新的标签样品。这引起了一个新的机器学习框架,称为转移学习:一种受人类在跨任务中推断知识以更有效学习的知识能力的学习环境。尽管有大量不同的转移学习方案,但本调查的主要目的是在特定的,可以说是最受欢迎的转移学习中最受欢迎的次级领域,概述最先进的理论结果,称为域适应。在此子场中,假定数据分布在整个培训和测试数据中发生变化,而学习任务保持不变。我们提供了与域适应性问题有关的现有结果的首次最新描述,该结果涵盖了基于不同统计学习框架的学习界限。
translated by 谷歌翻译
跨学科的一个重要问题是发现产生预期结果的干预措施。当可能的干预空间很大时,需要进行详尽的搜索,需要实验设计策略。在这种情况下,编码变量之间的因果关系以及因此对系统的影响,对于有效地确定理想的干预措施至关重要。我们开发了一种迭代因果方法来识别最佳干预措施,这是通过分布后平均值和所需目标平均值之间的差异来衡量的。我们制定了一种主动学习策略,该策略使用从不同干预措施中获得的样本来更新有关基本因果模型的信念,并确定对最佳干预措施最有用的样本,因此应在下一批中获得。该方法采用了因果模型的贝叶斯更新,并使用精心设计的,有因果关系的收购功能优先考虑干预措施。此采集函数以封闭形式进行评估,从而有效优化。理论上以信息理论界限和可证明的一致性结果在理论上基于理论上的算法。我们说明了综合数据和现实世界生物学数据的方法,即来自worturb-cite-seq实验的基因表达数据,以识别诱导特定细胞态过渡的最佳扰动;与几个基线相比,观察到所提出的因果方法可实现更好的样品效率。在这两种情况下,我们都认为因果知情的采集函数尤其优于现有标准,从而允许使用实验明显更少的最佳干预设计。
translated by 谷歌翻译
Distributional shift is one of the major obstacles when transferring machine learning prediction systems from the lab to the real world. To tackle this problem, we assume that variation across training domains is representative of the variation we might encounter at test time, but also that shifts at test time may be more extreme in magnitude. In particular, we show that reducing differences in risk across training domains can reduce a model's sensitivity to a wide range of extreme distributional shifts, including the challenging setting where the input contains both causal and anticausal elements. We motivate this approach, Risk Extrapolation (REx), as a form of robust optimization over a perturbation set of extrapolated domains (MM-REx), and propose a penalty on the variance of training risks (V-REx) as a simpler variant. We prove that variants of REx can recover the causal mechanisms of the targets, while also providing some robustness to changes in the input distribution ("covariate shift"). By tradingoff robustness to causally induced distributional shifts and covariate shift, REx is able to outperform alternative methods such as Invariant Risk Minimization in situations where these types of shift co-occur.
translated by 谷歌翻译
上下文的强盗和强化学习算法已成功用于各种交互式学习系统,例如在线广告,推荐系统和动态定价。但是,在高风险应用领域(例如医疗保健)中,它们尚未被广泛采用。原因之一可能是现有方法假定基本机制是静态的,因为它们不会在不同的环境上改变。但是,在许多现实世界中,这些机制可能会跨环境变化,这可能使静态环境假设无效。在本文中,考虑到离线上下文匪徒的框架,我们迈出了解决环境转变问题的一步。我们认为环境转移问题通过因果关系的角度,并提出了多种环境的背景匪徒,从而可以改变基本机制。我们采用因果关系文献的不变性概念,并介绍了政策不变性的概念。我们认为,仅当存在未观察到的变量时,政策不变性才有意义,并表明在这种情况下,保证在适当假设下跨环境概括最佳不变政策。我们的结果建立了因果关系,不变性和上下文土匪之间的具体联系。
translated by 谷歌翻译
分销(OOD)泛化问题的目标是培训推广所有环境的预测因子。此字段中的流行方法使用这样的假设,即这种预测器应为\ Texit {不变预测器},该{不变预测仪}捕获跨环境仍然不变的机制。虽然这些方法在各种案例研究中进行了实验成功,但仍然有很多关于这一假设的理论验证的空间。本文介绍了一系列不变预测因素所必需的一系列理论条件,以实现ood最优性。我们的理论不仅适用于非线性案例,还概括了\ CiteT {Rojas2018Invariant}中使用的必要条件。我们还从我们的理论中得出渐变对齐算法,并展示了\ Citet {Aubinlinear}提出的三个\ Texit {不变性单元测试}中的两种竞争力。
translated by 谷歌翻译
本文提出了在适当的监督信息下进行分解的生成因果代表(亲爱的)学习方法。与实施潜在变量独立性的现有分解方法不同,我们考虑了一种基本利益因素可以因果关系相关的一般情况。我们表明,即使在监督下,先前具有独立先验的方法也无法解散因果关系。在这一发现的激励下,我们提出了一种称为DEAR的新的解开学习方法,该方法可以使因果可控的产生和因果代表学习。这种新公式的关键要素是使用结构性因果模型(SCM)作为双向生成模型的先验分布。然后,使用合适的GAN算法与发电机和编码器共同训练了先验,并与有关地面真相因子及其基本因果结构的监督信息合并。我们提供了有关该方法的可识别性和渐近收敛性的理论理由。我们对合成和真实数据集进行了广泛的实验,以证明DEAR在因果可控生成中的有效性,以及在样本效率和分布鲁棒性方面,学到的表示表示对下游任务的好处。
translated by 谷歌翻译
因果学习的基本难度是通常不能根据观察数据完全识别因果模型。介入数据,即源自不同实验环境的数据,提高了可识别性。然而,改善统治性取决于每个实验中的干预措施的目标和性质。由于在实际应用实验往往是昂贵的,因此需要执行正确的干预措施,使得尽可能少。在这项工作中,我们提出了一种基于不变因果预测(ICP)的新的主动学习(即实验选择)框架(A-ICP)(Peters等,2016)。对于一般结构因果模型,我们的表征干预对所谓的稳定集的影响,由(Pfister等,2019)引入的概念。我们利用这些结果提出了用于A-ICP的几个干预选择策略,该策略快速揭示了因果图中响应变量的直接原因,同时保持ICP中固有的错误控制。经验上,我们分析了拟议的拟议政策在人口和有限政府实验中的表现。
translated by 谷歌翻译
尽管预测方法的相关性越来越高,但这些算法的因果影响仍然很大程度上是未开发的。这与考虑到,即使在简化因果充足之类的假设下,模型的统计风险也可能与其\ Textit {因果风险}有显着差异。在这里,我们研究了*因果概括* - 从观察到介入分布的概括 - 预测。我们的目标是找到问题的答案:自回归(var)模型在预测统计协会方面的疗效如何与其在干预措施下预测的能力相比?为此,我们介绍了*因果学习理论*预测的框架。使用此框架,我们获得了统计和因果风险之间差异的表征,这有助于识别它们之间的分歧源。在因果充足之下,因果概括的因果概括金额与额外的结构(限制介入介入分配)。该结构允许我们获得统一的收敛界面对VAR模型类的因果概括性。据我们所知,这是第一个为时序设置中因果概念提供理论保障的工作。
translated by 谷歌翻译