上下文的强盗和强化学习算法已成功用于各种交互式学习系统,例如在线广告,推荐系统和动态定价。但是,在高风险应用领域(例如医疗保健)中,它们尚未被广泛采用。原因之一可能是现有方法假定基本机制是静态的,因为它们不会在不同的环境上改变。但是,在许多现实世界中,这些机制可能会跨环境变化,这可能使静态环境假设无效。在本文中,考虑到离线上下文匪徒的框架,我们迈出了解决环境转变问题的一步。我们认为环境转移问题通过因果关系的角度,并提出了多种环境的背景匪徒,从而可以改变基本机制。我们采用因果关系文献的不变性概念,并介绍了政策不变性的概念。我们认为,仅当存在未观察到的变量时,政策不变性才有意义,并表明在这种情况下,保证在适当假设下跨环境概括最佳不变政策。我们的结果建立了因果关系,不变性和上下文土匪之间的具体联系。
translated by 谷歌翻译
仪器变量模型使我们能够确定协变量$ x $和响应$ y $之间的因果功能,即使在存在未观察到的混淆的情况下。大多数现有估计器都假定响应$ y $和隐藏混杂因素中的错误项与仪器$ z $不相关。这通常是由图形分离的动机,这一论点也证明了独立性。但是,提出独立限制会导致严格的可识别性结果。我们连接到计量经济学的现有文献,并提供了一种称为HSIC-X的实用方法,用于利用独立性,可以与任何基于梯度的学习程序结合使用。我们看到,即使在可识别的设置中,考虑到更高的矩可能会产生更好的有限样本结果。此外,我们利用独立性进行分布泛化。我们证明,只要这些移位足够强,拟议的估计器对于仪器的分布变化和最佳案例最佳变化是不变的。这些结果即使在未识别的情况下也能够得出这些结果,即仪器不足以识别因果功能。
translated by 谷歌翻译
最近,已经提出了利用预测模型在不断变化的环境方面的不变性来推断响应变量的因果父母的子集的不变性。如果环境仅影响少数基本机制,则例如不变因果预测(ICP)确定的子集可能很小,甚至是空的。我们介绍了最小不变性的概念,并提出了不变的血统搜索(IAS)。在其人群版本中,IAS输出了一个仅包含响应祖先的集合,并且是ICP输出的超集。当应用于数据时,如果不变性的基础测试具有渐近水平和功率,则相应的保证会渐近。我们开发可扩展算法并在模拟和真实数据上执行实验。
translated by 谷歌翻译
域的概括(DG)通过利用来自多个相关分布或域的标记培训数据在看不见的测试分布上表现良好的预测因子。为了实现这一目标,标准公式优化了所有可能域的最差性能。但是,由于最糟糕的转变在实践中的转变极不可能,这通常会导致过度保守的解决方案。实际上,最近的一项研究发现,没有DG算法在平均性能方面优于经验风险最小化。在这项工作中,我们认为DG既不是最坏的问题,也不是一个普通的问题,而是概率问题。为此,我们为DG提出了一个概率框架,我们称之为可能的域概括,其中我们的关键想法是在训练期间看到的分配变化应在测试时告诉我们可能的变化。为了实现这一目标,我们将培训和测试域明确关联为从同一基础元分布中获取的,并提出了一个新的优化问题 - 分数风险最小化(QRM) - 要求该预测因子以很高的概率概括。然后,我们证明了QRM:(i)产生的预测因子,这些预测因素将具有所需概率的新域(给定足够多的域和样本); (ii)随着概括的所需概率接近一个,恢复因果预测因子。在我们的实验中,我们引入了针对DG的更全面的以分位数评估协议,并表明我们的算法在真实和合成数据上的最先进基准都优于最先进的基准。
translated by 谷歌翻译
使用历史观察数据的政策学习是发现广泛应用程序的重要问题。示例包括选择优惠,价格,要发送给客户的广告,以及选择要开出患者的药物。但是,现有的文献取决于这样一个关键假设,即将在未来部署学习策略的未来环境与生成数据的过去环境相同 - 这个假设通常是错误或太粗糙的近似值。在本文中,我们提高了这一假设,并旨在通过不完整的观察数据来学习一项稳健的策略。我们首先提出了一个政策评估程序,该程序使我们能够评估政策在最坏情况下的转变下的表现。然后,我们为此建议的政策评估计划建立了中心限制定理类型保证。利用这种评估方案,我们进一步提出了一种新颖的学习算法,该算法能够学习一项对对抗性扰动和未知协变量转移的策略,并根据统一收敛理论的性能保证进行了绩效保证。最后,我们从经验上测试了合成数据集中提出的算法的有效性,并证明它提供了使用标准策略学习算法缺失的鲁棒性。我们通过在现实世界投票数据集的背景下提供了我们方法的全面应用来结束本文。
translated by 谷歌翻译
最近对DataSet Shift的兴趣,已经产生了许多方法,用于查找新的未经,无奈环境中预测的不变分布。然而,这些方法考虑不同类型的班次,并且已经在不同的框架下开发,从理论上难以分析解决方案如何与稳定性和准确性不同。采取因果图形视图,我们使用灵活的图形表示来表达各种类型的数据集班次。我们表明所有不变的分布对应于图形运算符的因果层次结构,该图形运算符禁用负责班次的图表中的边缘。层次结构提供了一个常见的理论基础,以便理解可以实现转移的何时以及如何实现稳定性,并且在稳定的分布可能不同的情况下。我们使用它来建立跨环境最佳性能的条件,并导出找到最佳稳定分布的新算法。使用这种新的视角,我们经验证明了最低限度和平均性能之间的权衡。
translated by 谷歌翻译
非政策评估(OPE)方法是评估高风险领域(例如医疗保健)中的政策的关键工具,在这些领域,直接部署通常是不可行的,不道德的或昂贵的。当期望部署环境发生变化(即数据集偏移)时,对于OPE方法,在此类更改中对策略进行强大的评估非常重要。现有的方法考虑对可以任意改变环境的任何可观察到的任何可观察到的属性的大量转变。这通常会导致对公用事业的高度悲观估计,从而使可能对部署有用的政策无效。在这项工作中,我们通过研究领域知识如何帮助提供对政策公用事业的更现实的估计来解决上述问题。我们利用人类的投入,在环境的哪些方面可能会发生变化,并适应OPE方法仅考虑这些方面的转变。具体而言,我们提出了一个新颖的框架,可靠的OPE(绳索),该框架认为基于用户输入的数据中的协变量子集,并估算了这些变化下最坏情况的效用。然后,我们为OPE开发了对OPE的计算有效算法,这些算法对上述强盗和马尔可夫决策过程的上述变化很强。我们还理论上分析了这些算法的样品复杂性。从医疗领域进行的合成和现实世界数据集进行了广泛的实验表明,我们的方法不仅可以捕获现实的数据集准确地转移,而且还会导致较少的悲观政策评估。
translated by 谷歌翻译
如今,收集来自不同环境的特征和响应对的观察已经变得越来越普遍。结果,由于分布变化,必须将学习的预测变量应用于具有不同分布的数据。一种原则性的方法是采用结构性因果模型来描述培训和测试模型,遵循不变性原则,该原理说响应的条件分布鉴于其预测因素在整个环境中保持不变。但是,当响应干预时,在实际情况下可能会违反该原则。一个自然的问题是,是否仍然可以识别其他形式的不变性来促进在看不见的环境中的预测。为了阐明这种具有挑战性的情况,我们引入了不变的匹配属性(IMP),这是通过附加功能捕获干预措施的明确关系。这导致了一种替代形式的不变性形式,该形式能够对响应进行统一的一般干预措施。我们在离散环境设置和连续环境设置下分析了我们方法的渐近概括误差,在该设置中,通过将其与半磁头变化的系数模型相关联来处理连续情况。我们提出的算法与各种实验环境中的现有方法相比表现出竞争性能。
translated by 谷歌翻译
在线学习通常需要探索以最大程度地提高长期奖励,但这是以短期“遗憾”为代价的。我们研究如何在多个小组之间分担这种探索成本。例如,在临床试验环境中,分配了亚最佳治疗的患者有效地产生了勘探成本。当患者根据种族或年龄与自然群体相关联时,自然要问任何单一群体所承担的探索成本是否“公平”。如此有动力,我们介绍了“分组”的强盗模型。我们利用公理讨价还价的理论,尤其是纳什议价解决方案,以形式化可能构成跨群体勘探成本的公平分裂的方式。一方面,我们表明,任何遗憾的政策都引起了最不公平的结果:此类政策将在可能的情况下传递最“处于弱势”的群体。更具建设性的方式,我们得出了最佳公平且同时享受“公平价格”的政策。我们通过对华法林剂量的上下文匪徒进行案例研究来说明我们的算法框架的相对优点,我们关注多个种族和年龄段的探索成本。
translated by 谷歌翻译
我们探索了一个新的强盗实验模型,其中潜在的非组织序列会影响武器的性能。上下文 - 统一算法可能会混淆,而那些执行正确的推理面部信息延迟的算法。我们的主要见解是,我们称之为Deconfounst Thompson采样的算法在适应性和健壮性之间取得了微妙的平衡。它的适应性在易于固定实例中带来了最佳效率,但是在硬性非平稳性方面显示出令人惊讶的弹性,这会导致其他自适应算法失败。
translated by 谷歌翻译
本文提出了一种估计溢出效应存在福利最大化政策的实验设计。我考虑一个设置在其中组织成一个有限数量的大型群集,并在每个群集中以不观察到的方式交互。作为第一种贡献,我介绍了一个单波实验,以估计治疗概率的变化的边际效应,以考虑到溢出率,并测试政策最优性。该设计在群集中独立地随机化处理,并诱导局部扰动到对簇成对的治疗概率。使用估计的边际效应,我构建了对定期治疗分配规则最大化福利的实际测试,并且我表征了其渐近性质。该想法是,研究人员应报告对福利最大化政策的边际效应和测试的估计:边际效应表明福利改善的方向,并提供了关于是否值得进行额外实验以估计估计福利改善的证据治疗分配。作为第二种贡献,我设计了多波实验来估计治疗分配规则并最大化福利。我获得了小型样本保证,最大可获得的福利和估计政策(遗憾)评估的福利之间的差异。这种保证的必要性是,遗憾在迭代和集群的数量中线性会聚到零。校准在信息扩散和现金转移方案上校准的模拟表明,该方法导致了显着的福利改进。
translated by 谷歌翻译
估计平均因果效应的理想回归(如果有)是什么?我们在离散协变量的设置中研究了这个问题,从而得出了各种分层估计器的有限样本方差的表达式。这种方法阐明了许多广泛引用的结果的基本统计现象。我们的博览会结合了研究因果效应估计的三种不同的方法论传统的见解:潜在结果,因果图和具有加性误差的结构模型。
translated by 谷歌翻译
我们考虑在离线域中的强化学习(RL)方法,没有其他在线数据收集,例如移动健康应用程序。计算机科学文献中的大多数现有策略优化算法都是在易于收集或模拟的在线设置中开发的。通过预采用的离线数据集,它们对移动健康应用程序的概括尚不清楚。本文的目的是开发一个新颖的优势学习框架,以便有效地使用预采用的数据进行策略优化。所提出的方法采用由任何现有的最新RL算法计算的最佳Q-估计器作为输入,并输出一项新策略,其价值比基于初始Q-得出的策略更快地收敛速度。估计器。进行广泛的数值实验以支持我们的理论发现。我们提出的方法的Python实现可在https://github.com/leyuanheart/seal上获得。
translated by 谷歌翻译
This paper studies offline policy learning, which aims at utilizing observations collected a priori (from either fixed or adaptively evolving behavior policies) to learn an optimal individualized decision rule that achieves the best overall outcomes for a given population. Existing policy learning methods rely on a uniform overlap assumption, i.e., the propensities of exploring all actions for all individual characteristics are lower bounded in the offline dataset; put differently, the performance of the existing methods depends on the worst-case propensity in the offline dataset. As one has no control over the data collection process, this assumption can be unrealistic in many situations, especially when the behavior policies are allowed to evolve over time with diminishing propensities for certain actions. In this paper, we propose a new algorithm that optimizes lower confidence bounds (LCBs) -- instead of point estimates -- of the policy values. The LCBs are constructed using knowledge of the behavior policies for collecting the offline data. Without assuming any uniform overlap condition, we establish a data-dependent upper bound for the suboptimality of our algorithm, which only depends on (i) the overlap for the optimal policy, and (ii) the complexity of the policy class we optimize over. As an implication, for adaptively collected data, we ensure efficient policy learning as long as the propensities for optimal actions are lower bounded over time, while those for suboptimal ones are allowed to diminish arbitrarily fast. In our theoretical analysis, we develop a new self-normalized type concentration inequality for inverse-propensity-weighting estimators, generalizing the well-known empirical Bernstein's inequality to unbounded and non-i.i.d. data.
translated by 谷歌翻译
Two central paradigms have emerged in the reinforcement learning (RL) community: online RL and offline RL. In the online RL setting, the agent has no prior knowledge of the environment, and must interact with it in order to find an $\epsilon$-optimal policy. In the offline RL setting, the learner instead has access to a fixed dataset to learn from, but is unable to otherwise interact with the environment, and must obtain the best policy it can from this offline data. Practical scenarios often motivate an intermediate setting: if we have some set of offline data and, in addition, may also interact with the environment, how can we best use the offline data to minimize the number of online interactions necessary to learn an $\epsilon$-optimal policy? In this work, we consider this setting, which we call the \textsf{FineTuneRL} setting, for MDPs with linear structure. We characterize the necessary number of online samples needed in this setting given access to some offline dataset, and develop an algorithm, \textsc{FTPedel}, which is provably optimal. We show through an explicit example that combining offline data with online interactions can lead to a provable improvement over either purely offline or purely online RL. Finally, our results illustrate the distinction between \emph{verifiable} learning, the typical setting considered in online RL, and \emph{unverifiable} learning, the setting often considered in offline RL, and show that there is a formal separation between these regimes.
translated by 谷歌翻译
我们研究了批量策略优化中模型选择的问题:给定固定的部分反馈数据集和$ M $ Model类,学习具有与最佳模型类的策略具有竞争力的性能的策略。通过识别任何模型选择算法应最佳地折衷的错误,以线性模型类在与线性模型类中的内容匪徒设置中的问题正式化。(1)近似误差,(2)统计复杂性,(3 )覆盖范围。前两个来源是在监督学习的模型选择中常见的,在最佳的交易中,这些属性得到了很好的研究。相比之下,第三个源是批量策略优化的唯一,并且是由于设置所固有的数据集移位。首先表明,没有批处理策略优化算法可以同时实现所有三个的保证,展示批量策略优化的困难之间的显着对比,以及监督学习中的积极结果。尽管存在这种负面结果,但我们表明,在三个错误源中的任何一个都可以实现实现剩下的两个近乎oracle不平等的算法。我们通过实验结论,证明了这些算法的功效。
translated by 谷歌翻译
我们研究了一个名为“战略MDP”的新型模型下的离线增强学习,该模型表征了本金和一系列与私有类型的近视药物之间的战略相互作用。由于双层结构和私人类型,战略MDP涉及主体与代理之间的信息不对称。我们专注于离线RL问题,其目标是基于由历史互动组成的预采用数据集学习委托人的最佳政策。未观察到的私人类型混淆了这样的数据集,因为它们会影响委托人收到的奖励和观察结果。我们提出了一种新颖的算法,具有算法工具(计划)的悲观政策学习,该算法利用仪器变量回归的思想和悲观主义原则在一般功能近似的背景下学习近乎最佳的原理政策。我们的算法是基于批判性观察,即主体的行为是有效的工具变量。特别是,在离线数据集中的部分覆盖范围假设下,我们证明计划输出$ 1 / \ sqrt {k} $ - 最佳策略,$ k $是收集的轨迹数量。我们进一步将框架应用于一些特殊的战略MDP案例,包括战略回归,战略强盗和推荐系统中的不合规性。
translated by 谷歌翻译
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
translated by 谷歌翻译
最近的工作突出了因果关系在设计公平决策算法中的作用。但是,尚不清楚现有的公平因果概念如何相互关系,或者将这些定义作为设计原则的后果是什么。在这里,我们首先将算法公平性的流行因果定义组装成两个广泛的家庭:(1)那些限制决策对反事实差异的影响的家庭; (2)那些限制了法律保护特征(如种族和性别)对决策的影响。然后,我们在分析和经验上表明,两个定义的家庭\ emph {几乎总是总是} - 从一种理论意义上讲 - 导致帕累托占主导地位的决策政策,这意味着每个利益相关者都有一个偏爱的替代性,不受限制的政策从大型自然级别中绘制。例如,在大学录取决定的情况下,每位利益相关者都不支持任何对学术准备和多样性的中立或积极偏好的利益相关者,将不利于因果公平定义的政策。的确,在因果公平的明显定义下,我们证明了由此产生的政策要求承认所有具有相同概率的学生,无论学术资格或小组成员身份如何。我们的结果突出了正式的局限性和因果公平的常见数学观念的潜在不利后果。
translated by 谷歌翻译
尽管现代的大规模数据集通常由异质亚群(例如,多个人口统计组或多个文本语料库)组成 - 最小化平均损失的标准实践并不能保证所有亚人群中均匀的低损失。我们提出了一个凸面程序,该过程控制给定尺寸的所有亚群中最差的表现。我们的程序包括有限样本(非参数)收敛的保证,可以保证最坏的亚群。从经验上讲,我们观察到词汇相似性,葡萄酒质量和累犯预测任务,我们最糟糕的程序学习了对不看到看不见的亚人群的模型。
translated by 谷歌翻译