最近对DataSet Shift的兴趣,已经产生了许多方法,用于查找新的未经,无奈环境中预测的不变分布。然而,这些方法考虑不同类型的班次,并且已经在不同的框架下开发,从理论上难以分析解决方案如何与稳定性和准确性不同。采取因果图形视图,我们使用灵活的图形表示来表达各种类型的数据集班次。我们表明所有不变的分布对应于图形运算符的因果层次结构,该图形运算符禁用负责班次的图表中的边缘。层次结构提供了一个常见的理论基础,以便理解可以实现转移的何时以及如何实现稳定性,并且在稳定的分布可能不同的情况下。我们使用它来建立跨环境最佳性能的条件,并导出找到最佳稳定分布的新算法。使用这种新的视角,我们经验证明了最低限度和平均性能之间的权衡。
translated by 谷歌翻译
In this review, we discuss approaches for learning causal structure from data, also called causal discovery. In particular, we focus on approaches for learning directed acyclic graphs (DAGs) and various generalizations which allow for some variables to be unobserved in the available data. We devote special attention to two fundamental combinatorial aspects of causal structure learning. First, we discuss the structure of the search space over causal graphs. Second, we discuss the structure of equivalence classes over causal graphs, i.e., sets of graphs which represent what can be learned from observational data alone, and how these equivalence classes can be refined by adding interventional data.
translated by 谷歌翻译
上下文的强盗和强化学习算法已成功用于各种交互式学习系统,例如在线广告,推荐系统和动态定价。但是,在高风险应用领域(例如医疗保健)中,它们尚未被广泛采用。原因之一可能是现有方法假定基本机制是静态的,因为它们不会在不同的环境上改变。但是,在许多现实世界中,这些机制可能会跨环境变化,这可能使静态环境假设无效。在本文中,考虑到离线上下文匪徒的框架,我们迈出了解决环境转变问题的一步。我们认为环境转移问题通过因果关系的角度,并提出了多种环境的背景匪徒,从而可以改变基本机制。我们采用因果关系文献的不变性概念,并介绍了政策不变性的概念。我们认为,仅当存在未观察到的变量时,政策不变性才有意义,并表明在这种情况下,保证在适当假设下跨环境概括最佳不变政策。我们的结果建立了因果关系,不变性和上下文土匪之间的具体联系。
translated by 谷歌翻译
因果关系是理解世界的科学努力的基本组成部分。不幸的是,在心理学和社会科学中,因果关系仍然是禁忌。由于越来越多的建议采用因果方法进行研究的重要性,我们重新制定了心理学研究方法的典型方法,以使不可避免的因果理论与其余的研究渠道协调。我们提出了一个新的过程,该过程始于从因果发现和机器学习的融合中纳入技术的发展,验证和透明的理论形式规范。然后,我们提出将完全指定的理论模型的复杂性降低到与给定目标假设相关的基本子模型中的方法。从这里,我们确定利息量是否可以从数据中估算出来,如果是的,则建议使用半参数机器学习方法来估计因果关系。总体目标是介绍新的研究管道,该管道可以(a)促进与测试因果理论的愿望兼容的科学询问(b)鼓励我们的理论透明代表作为明确的数学对象,(c)将我们的统计模型绑定到我们的统计模型中该理论的特定属性,因此减少了理论到模型间隙通常引起的规范不足问题,以及(d)产生因果关系和可重复性的结果和估计。通过具有现实世界数据的教学示例来证明该过程,我们以摘要和讨论来结论。
translated by 谷歌翻译
基于AI和机器学习的决策系统已在各种现实世界中都使用,包括医疗保健,执法,教育和金融。不再是牵强的,即设想一个未来,自治系统将推动整个业务决策,并且更广泛地支持大规模决策基础设施以解决社会最具挑战性的问题。当人类做出决定时,不公平和歧视的问题普遍存在,并且当使用几乎没有透明度,问责制和公平性的机器做出决定时(或可能会放大)。在本文中,我们介绍了\ textit {Causal公平分析}的框架,目的是填补此差距,即理解,建模,并可能解决决策设置中的公平性问题。我们方法的主要见解是将观察到数据中存在的差异的量化与基本且通常是未观察到的因果机制收集的因果机制的收集,这些机制首先会产生差异,挑战我们称之为因果公平的基本问题分析(FPCFA)。为了解决FPCFA,我们研究了分解差异和公平性的经验度量的问题,将这种变化归因于结构机制和人群的不同单位。我们的努力最终达到了公平地图,这是组织和解释文献中不同标准之间关系的首次系统尝试。最后,我们研究了进行因果公平分析并提出一本公平食谱的最低因果假设,该假设使数据科学家能够评估不同影响和不同治疗的存在。
translated by 谷歌翻译
域的概括(DG)通过利用来自多个相关分布或域的标记培训数据在看不见的测试分布上表现良好的预测因子。为了实现这一目标,标准公式优化了所有可能域的最差性能。但是,由于最糟糕的转变在实践中的转变极不可能,这通常会导致过度保守的解决方案。实际上,最近的一项研究发现,没有DG算法在平均性能方面优于经验风险最小化。在这项工作中,我们认为DG既不是最坏的问题,也不是一个普通的问题,而是概率问题。为此,我们为DG提出了一个概率框架,我们称之为可能的域概括,其中我们的关键想法是在训练期间看到的分配变化应在测试时告诉我们可能的变化。为了实现这一目标,我们将培训和测试域明确关联为从同一基础元分布中获取的,并提出了一个新的优化问题 - 分数风险最小化(QRM) - 要求该预测因子以很高的概率概括。然后,我们证明了QRM:(i)产生的预测因子,这些预测因素将具有所需概率的新域(给定足够多的域和样本); (ii)随着概括的所需概率接近一个,恢复因果预测因子。在我们的实验中,我们引入了针对DG的更全面的以分位数评估协议,并表明我们的算法在真实和合成数据上的最先进基准都优于最先进的基准。
translated by 谷歌翻译
This review presents empirical researchers with recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both.
translated by 谷歌翻译
数据科学任务可以被视为了解数据的感觉或测试关于它的假设。从数据推断的结论可以极大地指导我们做出信息做出决定。大数据使我们能够与机器学习结合执行无数的预测任务,例如鉴定患有某种疾病的高风险患者并采取可预防措施。然而,医疗保健从业者不仅仅是仅仅预测的内容 - 它们也对输入特征和临床结果之间的原因关系感兴趣。了解这些关系将有助于医生治疗患者并有效降低风险。通常通过随机对照试验鉴定因果关系。当科学家和研究人员转向观察研究并试图吸引推论时,这种试验通常是不可行的。然而,观察性研究也可能受到选择和/或混淆偏差的影响,这可能导致错误的因果结论。在本章中,我们将尝试突出传统机器学习和统计方法中可能出现的一些缺点,以分析观察数据,特别是在医疗保健数据分析域中。我们将讨论因果化推理和方法,以发现医疗领域的观测研究原因。此外,我们将展示因果推断在解决某些普通机器学习问题等中的应用,例如缺少数据和模型可运输性。最后,我们将讨论将加强学习与因果关系相结合的可能性,作为反击偏见的一种方式。
translated by 谷歌翻译
我们提供了一种主动识别分布的小小的变化的方法,从而导致模型性能差异很大。为了确保这些转移是合理的,我们会以观察到的变量的因果机制的可解释变化来对其进行参数化。这定义了合理分布的参数鲁棒性集和相应的最坏情况损失。虽然可以通过重新加权技术(例如重要性抽样)来估算单个参数转移下的损失,但最终的最坏情况优化问题是非convex,并且估计值可能遭受较大的差异。但是,对于小移位,我们可以构建局部二阶近似值,以构建损失的损失,并提出找到最坏情况下的最差偏移作为特定的非凸二次二次优化问题,为此有效算法可用。我们证明,可以直接估计条件指数族模型中的移位,并且绑定了近似误差。我们将方法应用于计算机视觉任务(从图像中对性别进行分类),从而揭示了对非毒物属性转变的敏感性。
translated by 谷歌翻译
Machine learning models rely on various assumptions to attain high accuracy. One of the preliminary assumptions of these models is the independent and identical distribution, which suggests that the train and test data are sampled from the same distribution. However, this assumption seldom holds in the real world due to distribution shifts. As a result models that rely on this assumption exhibit poor generalization capabilities. Over the recent years, dedicated efforts have been made to improve the generalization capabilities of these models collectively known as -- \textit{domain generalization methods}. The primary idea behind these methods is to identify stable features or mechanisms that remain invariant across the different distributions. Many generalization approaches employ causal theories to describe invariance since causality and invariance are inextricably intertwined. However, current surveys deal with the causality-aware domain generalization methods on a very high-level. Furthermore, we argue that it is possible to categorize the methods based on how causality is leveraged in that method and in which part of the model pipeline is it used. To this end, we categorize the causal domain generalization methods into three categories, namely, (i) Invariance via Causal Data Augmentation methods which are applied during the data pre-processing stage, (ii) Invariance via Causal representation learning methods that are utilized during the representation learning stage, and (iii) Invariance via Transferring Causal mechanisms methods that are applied during the classification stage of the pipeline. Furthermore, this survey includes in-depth insights into benchmark datasets and code repositories for domain generalization methods. We conclude the survey with insights and discussions on future directions.
translated by 谷歌翻译
转移学习中最关键的问题之一是域适应的任务,其中目标是将在一个或多个源域中培训的算法应用于不同(但相关)的目标域。本文在域内存在协变量转变时,涉及域适应。解决此问题的现有因果推断方法的主要限制之一是可扩展性。为了克服这种困难,我们提出了一种避免穷举搜索的算法,并识别基于Markov毯子发现的源和目标域的不变因果特征。 SCTL不需要先前了解因果结构,干预措施的类型或干预目标。有一个与SCTL相关的内在位置,使其实现实际上可扩展且稳健,因为本地因果发现增加了计算独立性测试的力量,并使域适配的任务进行了计算地进行了易行的。我们通过低维和高维设置中的合成和实际数据集显示SCTL的可扩展性和稳健性。
translated by 谷歌翻译
如今,收集来自不同环境的特征和响应对的观察已经变得越来越普遍。结果,由于分布变化,必须将学习的预测变量应用于具有不同分布的数据。一种原则性的方法是采用结构性因果模型来描述培训和测试模型,遵循不变性原则,该原理说响应的条件分布鉴于其预测因素在整个环境中保持不变。但是,当响应干预时,在实际情况下可能会违反该原则。一个自然的问题是,是否仍然可以识别其他形式的不变性来促进在看不见的环境中的预测。为了阐明这种具有挑战性的情况,我们引入了不变的匹配属性(IMP),这是通过附加功能捕获干预措施的明确关系。这导致了一种替代形式的不变性形式,该形式能够对响应进行统一的一般干预措施。我们在离散环境设置和连续环境设置下分析了我们方法的渐近概括误差,在该设置中,通过将其与半磁头变化的系数模型相关联来处理连续情况。我们提出的算法与各种实验环境中的现有方法相比表现出竞争性能。
translated by 谷歌翻译
当部署在与受过训练的域不同的域中时,机器学习方法可能是不可靠的。为了解决这个问题,我们可能希望学习以域不变性的数据表示,即我们保留跨域稳定但抛出虚假变化的部分的数据结构。这种类型有许多表示学习方法,包括基于数据增强,分配不变性和风险不变性的方法。不幸的是,当面对任何特定的现实世界转移时,目前尚不清楚这些方法中有哪些(如果有的话)可以正常工作。本文的目的是展示不同方法如何相互关系,并阐明各自预期成功的现实情况。关键工具是一个新的域转移概念,它依靠因果关系是不变的想法,但是非因果关系(例如,由于混杂而引起的)可能会有所不同。
translated by 谷歌翻译
因果学习的基本难度是通常不能根据观察数据完全识别因果模型。介入数据,即源自不同实验环境的数据,提高了可识别性。然而,改善统治性取决于每个实验中的干预措施的目标和性质。由于在实际应用实验往往是昂贵的,因此需要执行正确的干预措施,使得尽可能少。在这项工作中,我们提出了一种基于不变因果预测(ICP)的新的主动学习(即实验选择)框架(A-ICP)(Peters等,2016)。对于一般结构因果模型,我们的表征干预对所谓的稳定集的影响,由(Pfister等,2019)引入的概念。我们利用这些结果提出了用于A-ICP的几个干预选择策略,该策略快速揭示了因果图中响应变量的直接原因,同时保持ICP中固有的错误控制。经验上,我们分析了拟议的拟议政策在人口和有限政府实验中的表现。
translated by 谷歌翻译
非正式地,“虚假关联”是模型对分析师认为无关紧要的输入数据的某些方面的依赖性。在机器学习中,这些都有一个知道它 - 当你看到它的字符;例如,改变句子主题的性别改变了情绪预测因素的输出。要检查虚假相关性,我们可以通过对输入数据的无关部分进行扰动并查看模型预测变化来“压力测试”模型。在本文中,我们使用因果推断的工具研究压力测试。我们将反事实不变性介绍,作为一个正式化的要求,即改变输入不相关的部分不应改变模型预测。我们将反事实不变性与域外模型性能进行连接,并提供用于学习(大约)反事实不变预测器的实用方案(无需访问反事实示例)。事实证明,反事实不变性的手段和含义都基本上取决于数据的真实潜在的因果结构 - 特别是标签是否导致特征或功能导致标签。不同的因果结构需要不同的正则化方案,以诱导反事实不变性。同样,反事实不变性暗示不同的域移位保证,具体取决于底层的因果结构。该理论是通过文本分类的经验结果支持。
translated by 谷歌翻译
尽管在治疗和结果之间存在未衡量的混杂因素,但前门标准可用于识别和计算因果关系。但是,关键假设 - (i)存在充分介导治疗对结果影响的变量(或一组变量)的存在,(ii)同时并不遭受类似的混淆问题的困扰 - outcome对 - 通常被认为是难以置信的。本文探讨了这些假设的可检验性。我们表明,在涉及辅助变量的轻度条件下,可以通过广义平等约束也可以测试前门模型中编码的假设(以及简单的扩展)。我们基于此观察结果提出了两个合适性测试,并评估我们对真实和合成数据的提议的疗效。我们还将理论和经验比较与仪器可变方法处理未衡量的混杂。
translated by 谷歌翻译
A recent explosion of research focuses on developing methods and tools for building fair predictive models. However, most of this work relies on the assumption that the training and testing data are representative of the target population on which the model will be deployed. However, real-world training data often suffer from selection bias and are not representative of the target population for many reasons, including the cost and feasibility of collecting and labeling data, historical discrimination, and individual biases. In this paper, we introduce a new framework for certifying and ensuring the fairness of predictive models trained on biased data. We take inspiration from query answering over incomplete and inconsistent databases to present and formalize the problem of consistent range approximation (CRA) of answers to queries about aggregate information for the target population. We aim to leverage background knowledge about the data collection process, biased data, and limited or no auxiliary data sources to compute a range of answers for aggregate queries over the target population that are consistent with available information. We then develop methods that use CRA of such aggregate queries to build predictive models that are certifiably fair on the target population even when no external information about that population is available during training. We evaluate our methods on real data and demonstrate improvements over state of the art. Significantly, we show that enforcing fairness using our methods can lead to predictive models that are not only fair, but more accurate on the target population.
translated by 谷歌翻译
也称为(非参数)结构方程模型(SEMS)的结构因果模型(SCM)被广泛用于因果建模目的。特别是,也称为递归SEM的无循环SCMS,形成了一个研究的SCM的良好的子类,概括了因果贝叶斯网络来允许潜在混淆。在本文中,我们调查了更多普通环境中的SCM,允许存在潜在混杂器和周期。我们展示在存在周期中,无循环SCM的许多方便的性质通常不会持有:它们并不总是有解决方案;它们并不总是诱导独特的观察,介入和反事实分布;边缘化并不总是存在,如果存在边缘模型并不总是尊重潜在的投影;他们并不总是满足马尔可夫财产;他们的图表并不总是与他们的因果语义一致。我们证明,对于SCM一般,这些属性中的每一个都在某些可加工条件下保持。我们的工作概括了SCM的结果,迄今为止仅针对某些特殊情况所知的周期。我们介绍了将循环循环设置扩展到循环设置的简单SCM的类,同时保留了许多方便的无环SCM的性能。用本文,我们的目标是为SCM提供统计因果建模的一般理论的基础。
translated by 谷歌翻译
因果推断对于跨业务参与,医疗和政策制定等领域的数据驱动决策至关重要。然而,关于因果发现的研究已经与推理方法分开发展,从而阻止了两个领域方法的直接组合。在这项工作中,我们开发了深层端到端因果推理(DECI),这是一种基于流动的非线性添加噪声模型,该模型具有观察数据,并且可以执行因果发现和推理,包括有条件的平均治疗效果(CATE) )估计。我们提供了理论上的保证,即DECI可以根据标准因果发现假设恢复地面真实因果图。受应用影响的激励,我们将该模型扩展到具有缺失值的异质,混合型数据,从而允许连续和离散的治疗决策。我们的结果表明,与因果发现的相关基线相比,DECI的竞争性能和(c)在合成数据集和因果机器学习基准测试基准的一千多个实验中,跨数据类型和缺失水平进行了估计。
translated by 谷歌翻译
We explore how observational and interventional causal discovery methods can be combined. A state-of-the-art observational causal discovery algorithm for time series capable of handling latent confounders and contemporaneous effects, called LPCMCI, is extended to profit from casual constraints found through randomized control trials. Numerical results show that, given perfect interventional constraints, the reconstructed structural causal models (SCMs) of the extended LPCMCI allow 84.6% of the time for the optimal prediction of the target variable. The implementation of interventional and observational causal discovery is modular, allowing causal constraints from other sources. The second part of this thesis investigates the question of regret minimizing control by simultaneously learning a causal model and planning actions through the causal model. The idea is that an agent to optimize a measured variable first learns the system's mechanics through observational causal discovery. The agent then intervenes on the most promising variable with randomized values allowing for the exploitation and generation of new interventional data. The agent then uses the interventional data to enhance the causal model further, allowing improved actions the next time. The extended LPCMCI can be favorable compared to the original LPCMCI algorithm. The numerical results show that detecting and using interventional constraints leads to reconstructed SCMs that allow 60.9% of the time for the optimal prediction of the target variable in contrast to the baseline of 53.6% when using the original LPCMCI algorithm. Furthermore, the induced average regret decreases from 1.2 when using the original LPCMCI algorithm to 1.0 when using the extended LPCMCI algorithm with interventional discovery.
translated by 谷歌翻译