制定现实世界优化问题通常从历史数据中的预测开始(例如,旨在推荐快速路线在旅行时间预测上依赖的优化器)。通常,学习用于生成优化问题的预测模型并解决该问题的在两个单独的阶段中执行。最近的工作表明,通过通过优化任务区分,如何通过差异来学习这些预测模型。这些方法通常会产生经验改进,通常归因于端到端,比两级解决方案中使用的标准损耗功能更好地制作更好的误差权衡。我们优化这种解释,更精确地表征端到端可以提高性能。当预测目标是随机时,两级解决方案必须先验到模型的目标分布的统计数据 - 我们考虑对预测目标的预期 - 而端到端解决方案可以自适应地使这一选择。我们表明,两阶段和端到端方法之间的性能差距与随机优化中相关概念的价格密切相关,并显示了一些现有的POC结果对预测的优化问题的影响。然后,我们考虑一种新颖且特别实际的设置,其中组合多种预测目标以获得每个目标函数的系数。我们给出了明确的结构,其中(1)两级表现不足低于端到端; (2)两级是最佳的。我们使用模拟来通过实验量化性能差距,并从文献中确定各种现实世界应用,其客观函数依赖于多种预测目标,表明端到端学习可以产生重大改进。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
由于在数据稀缺的设置中,交叉验证的性能不佳,我们提出了一个新颖的估计器,以估计数据驱动的优化策略的样本外部性能。我们的方法利用优化问题的灵敏度分析来估计梯度关于数据中噪声量的最佳客观值,并利用估计的梯度将策略的样本中的表现为依据。与交叉验证技术不同,我们的方法避免了为测试集牺牲数据,在训练和因此非常适合数据稀缺的设置时使用所有数据。我们证明了我们估计量的偏见和方差范围,这些问题与不确定的线性目标优化问题,但已知的,可能是非凸的,可行的区域。对于更专业的优化问题,从某种意义上说,可行区域“弱耦合”,我们证明结果更强。具体而言,我们在估算器的错误上提供明确的高概率界限,该估计器在策略类别上均匀地保持,并取决于问题的维度和策略类的复杂性。我们的边界表明,在轻度条件下,随着优化问题的尺寸的增长,我们的估计器的误差也会消失,即使可用数据的量仍然很小且恒定。说不同的是,我们证明我们的估计量在小型数据中的大规模政权中表现良好。最后,我们通过数值将我们提出的方法与最先进的方法进行比较,通过使用真实数据调度紧急医疗响应服务的案例研究。我们的方法提供了更准确的样本外部性能估计,并学习了表现更好的政策。
translated by 谷歌翻译
我们考虑一个一般的在线随机优化问题,在有限时间段的视野中具有多个预算限制。在每个时间段内,都会揭示奖励功能和多个成本功能,并且决策者需要从凸面和紧凑型措施中指定行动,以收集奖励并消耗预算。每个成本函数对应于一个预算的消费。在每个时期,奖励和成本函数都是从未知分布中得出的,该分布在整个时间内都是非平稳的。决策者的目的是最大化受预算限制的累积奖励。该配方捕获了广泛的应用程序,包括在线线性编程和网络收入管理等。在本文中,我们考虑了两个设置:(i)一个数据驱动的设置,其中真实分布未知,但可以提供先前的估计(可能不准确); (ii)一个不信息的环境,其中真实分布是完全未知的。我们提出了一项基于统一的浪费距离措施,以量化设置(i)中先验估计值的不准确性和设置(ii)中系统的非平稳性。我们表明,拟议的措施导致在两种情况下都能获得统一后悔的必要条件。对于设置(i),我们提出了一种新的算法,该算法采用了原始的偶视角,并将基础分布的先前信息集成到双重空间中的在线梯度下降过程。该算法也自然扩展到非信息设置(II)。在这两种设置下,我们显示相应的算法实现了最佳秩序的遗憾。在数值实验中,我们演示了如何将所提出的算法与重新溶解技术自然整合,以进一步提高经验性能。
translated by 谷歌翻译
许多实际优化问题涉及不确定的参数,这些参数具有概率分布,可以使用上下文特征信息来估算。与首先估计不确定参数的分布然后基于估计优化目标的标准方法相反,我们提出了一个\ textIt {集成条件估计 - 优化}(ICEO)框架,该框架估计了随机参数的潜在条件分布同时考虑优化问题的结构。我们将随机参数的条件分布与上下文特征之间的关系直接建模,然后以与下游优化问题对齐的目标估算概率模型。我们表明,我们的ICEO方法在适度的规律性条件下渐近一致,并以概括范围的形式提供有限的性能保证。在计算上,使用ICEO方法执行估计是一种非凸面且通常是非差异的优化问题。我们提出了一种通用方法,用于近似从估计的条件分布到通过可区分函数的最佳决策的潜在非差异映射,这极大地改善了应用于非凸问题的基于梯度的算法的性能。我们还提供了半代理案例中的多项式优化解决方案方法。还进行了数值实验,以显示我们在不同情况下的方法的经验成功,包括数据样本和模型不匹配。
translated by 谷歌翻译
这项工作解决了逆线优化,其中目标是推断线性程序的未知成本向量。具体地,我们考虑数据驱动的设置,其中可用数据是对应于线性程序的不同实例的最佳解决方案的嘈杂的观察。我们介绍了一个问题的新配方,与其他现有方法相比,允许恢复较少的限制性和一般更适当的可允许成本估算。可以表明,该逆优化问题产生有限数量的解决方案,并且我们开发了一个精确的两相算法来确定所有此类解决方案。此外,我们提出了一种有效的分解算法来解决问题的大实例。该算法自然地扩展到在线学习环境,可以用于提供成本估计的快速更新,因为新数据随着时间的推移可用。对于在线设置,我们进一步开发了一种有效的自适应采样策略,指导下一个样本的选择。所提出的方法的功效在涉及两种应用,客户偏好学习和生产计划的成本估算的计算实验中进行了证明。结果表明计算和采样努力的显着减少。
translated by 谷歌翻译
In model selection problems for machine learning, the desire for a well-performing model with meaningful structure is typically expressed through a regularized optimization problem. In many scenarios, however, the meaningful structure is specified in some discrete space, leading to difficult nonconvex optimization problems. In this paper, we connect the model selection problem with structure-promoting regularizers to submodular function minimization with continuous and discrete arguments. In particular, we leverage the theory of submodular functions to identify a class of these problems that can be solved exactly and efficiently with an agnostic combination of discrete and continuous optimization routines. We show how simple continuous or discrete constraints can also be handled for certain problem classes and extend these ideas to a robust optimization framework. We also show how some problems outside of this class can be embedded within the class, further extending the class of problems our framework can accommodate. Finally, we numerically validate our theoretical results with several proof-of-concept examples with synthetic and real-world data, comparing against state-of-the-art algorithms.
translated by 谷歌翻译
预测到优化的框架在许多实际设置中都是基础:预测优化问题的未知参数,然后使用参数的预测值解决该问题。与参数的预测误差相反,在这种环境中的自然损失函数是考虑预测参数引起的决策成本。最近在Elmachtoub和Grigas(2022)中引入了此损失函数,并被称为智能预测 - 优化(SPO)损失。在这项工作中,我们试图提供有关在SPO损失的背景下,预测模型在训练数据中概括的预测模型的性能如何。由于SPO损失是非凸面和非lipschitz,因此不适用推导概括范围的标准结果。我们首先根据natarajan维度得出界限,在多面体可行区域中,在极端点数中最大程度地比对数扩展,但是,在一般凸的可行区域中,对决策维度具有线性依赖性。通过利用SPO损耗函数的结构和可行区域的关键特性,我们将其表示为强度属性,我们可以显着提高对决策和特征维度的依赖。我们的方法和分析依赖于围绕有问题的预测的利润,这些预测不会产生独特的最佳解决方案,然后在修改后的利润率SPO损失函数的背景下提供了概括界限,而SPO损失函数是Lipschitz的连续。最后,我们表征了强度特性,并表明可以有效地计算出具有显式极端表示的强凸体和多面体的修饰的SPO损耗。
translated by 谷歌翻译
资源限制的在线分配问题是收入管理和在线广告中的核心问题。在这些问题中,请求在有限的地平线期间顺序到达,对于每个请求,决策者需要选择消耗一定数量资源并生成奖励的动作。目标是最大限度地提高累计奖励,这是对资源总消费的限制。在本文中,我们考虑一种数据驱动的设置,其中使用决策者未知的输入模型生成每个请求的奖励和资源消耗。我们设计了一般的算法算法,可以在各种输入模型中实现良好的性能,而不知道它们面临的类型类型。特别是,我们的算法在独立和相同的分布式输入以及各种非静止随机输入模型下是渐近的最佳选择,并且当输入是对抗性时,它们达到渐近最佳的固定竞争比率。我们的算法在Lagrangian双色空间中运行:它们为使用在线镜像血管更新的每个资源维护双倍乘数。通过相应地选择参考功能,我们恢复双梯度下降和双乘法权重更新算法。与现有的在线分配问题的现有方法相比,所产生的算法简单,快速,不需要在收入函数,消费函数和动作空间中凸起。我们将应用程序讨论到网络收入管理,在线竞标,重复拍卖,预算限制,与高熵的在线比例匹配,以及具有有限库存的个性化分类优化。
translated by 谷歌翻译
我们研究了一个定价设置,其中每个客户都基于客户和/或产品特征提供了一种预测客户对该产品的估值的产品特征。通常只有历史销售记录,我们遵守每个客户是否以规定的价格购买产品,而不是客户的真实估值。因此,数据受到历史销售政策的影响,历史销售政策在没有进行实际实验的可能性的情况下估算未来损失/遗憾的困难/遗憾的损失/遗憾,而是优化诸如收入管理等下游任务的新政策。我们研究如何制定损失功能,该功能可用于直接优化定价策略,而不是通过中间需求估计阶段,这可能在实践中被偏见,因为模型拼写,正常化或校准差。虽然在估值数据可用时提出了现有方法,但我们提出了观察数据设置的损失函数。为实现这一目标,我们将机器学习的想法适应损坏的标签,我们可以考虑每个观察到的客户的结果(购买或不按规定的价格购买),作为客户估值的(已知)概率转变。从这种转变,我们派生了一类合适的无偏损失功能。在此类中,我们识别最小方差估计器,那些对不良需求函数估计的稳健性,并在估计的需求功能有用时提供指导。此外,我们还表明,当应用于我们的上下文定价环境时,在违规评估文学中流行的估计人员在这类损失职能范围内,并且当每个估算师在实践中可能表现良好时,还提供管理层。
translated by 谷歌翻译
在本文中,我们研究了电子商务运营商面临的顺序决策问题,与何时从中央仓库发送车辆以服务于客户请求,并在哪个命令下提供服务,假设是在到达仓库的包裹是随机且动态的。目的是最大化在服务时间内可以交付的包裹数。我们提出了两种解决此问题的强化学习方法,一种基于策略函数近似(PFA),第二种基于值函数近似(VFA)。两种方法都与前景策略相结合,其中未来发布日期以蒙特卡洛的方式进行采样,并使用量身定制的批处理方法来近似未来状态的价值。我们的PFA和VFA很好地利用了基于分支机构的精确方法来提高决策质量。我们还建立了足够的条件,可以将最佳策略的部分表征并将其集成到PFA/VFA中。在基于720个基准实例的实证研究中,我们使用具有完美信息的上限进行了竞争分析,我们表明PFA和VFA的表现极大地超过了两种替代近视方法。总体而言,PFA提供最佳解决方案,而VFA(从两阶段随机优化模型中受益)在解决方案质量和计算时间之间取得了更好的权衡。
translated by 谷歌翻译
当我们对优化模型中的不确定参数进行观察以及对协变量的同时观察时,我们研究了数据驱动决策的优化。鉴于新的协变量观察,目标是选择一个决定以此观察为条件的预期成本的决定。我们研究了三个数据驱动的框架,这些框架将机器学习预测模型集成在随机编程样本平均值近似(SAA)中,以近似解决该问题的解决方案。 SAA框架中的两个是新的,并使用了场景生成的剩余预测模型的样本外残差。我们研究的框架是灵活的,并且可以容纳参数,非参数和半参数回归技术。我们在数据生成过程,预测模型和随机程序中得出条件,在这些程序下,这些数据驱动的SaaS的解决方案是一致且渐近最佳的,并且还得出了收敛速率和有限的样本保证。计算实验验证了我们的理论结果,证明了我们数据驱动的公式比现有方法的潜在优势(即使预测模型被误解了),并说明了我们在有限的数据制度中新的数据驱动配方的好处。
translated by 谷歌翻译
我们提出了一种基于机器学习的新型方法来解决涉及大量独立关注者的二重性程序,作为一种特殊情况,其中包括两阶段随机编程。我们提出了一个优化模型,该模型明确考虑了追随者的采样子集,并利用机器学习模型来估计未采样关注者的客观值。与现有方法不同,我们将机器学习模型培训嵌入到优化问题中,这使我们能够采用无法使用领导者决策来表示的一般追随者功能。我们证明了由原始目标函数衡量的生成领导者决策的最佳差距,该目标函数考虑了整个追随者集。然后,我们开发追随者采样算法来收紧界限和一种表示追随者功能的表示方法,可以用作嵌入式机器学习模型的输入。使用骑自行车网络设计问题的合成实例,我们比较方法的计算性能与基线方法。我们的方法为追随者的目标价值观提供了更准确的预测,更重要的是,产生了更高质量的领导者决策。最后,我们对骑自行车基础设施计划进行了现实世界中的案例研究,我们采用方法来解决超过一百万关注者的网络设计问题。与当前的自行车网络扩展实践相比,我们的方法提出了有利的性能。
translated by 谷歌翻译
我们考虑一个预期值排名和选择问题,其中所有K解决方案的仿真输出都取决于常见的不确定输入模型。鉴于输入模型的不确定性是由有限支持的概率单纯捕获的,我们将最佳最佳(MPB)定义为最佳概率最大的解决方案。为了设计有效的采样算法以找到MPB,我们首先得出了一个错误选择MPB的概率的较大偏差率,然后提出最佳计算预算分配(OCBA)问题,以找到最佳的静态采样比率的最佳静态采样率所有解决方案输入模型对最大化下限。我们设计了一系列顺序算法,这些算法应用于可解释和计算有效的采样规则,并证明其采样比达到了随着仿真预算的增加而达到OCBA问题的最佳条件。该算法针对用于上下文排名和选择问题的最新顺序抽样算法进行了基准测试,并证明在查找MPB时具有出色的经验性能。
translated by 谷歌翻译
在确定性优化中,通常假定问题的所有参数都是固定和已知的。但是,实际上,某些参数可能是未知的先验参数,但可以从历史数据中估算。典型的预测 - 优化方法将预测和优化分为两个阶段。最近,端到端的预测到优化已成为有吸引力的替代方法。在这项工作中,我们介绍了PYEPO软件包,这是一个基于Pytorch的端到端预测,然后在Python中进行了优化的库。据我们所知,PYEPO(发音为“带有静音” n“”的“菠萝”)是线性和整数编程的第一个通用工具,具有预测的目标函数系数。它提供了两种基本算法:第一种基于Elmachtoub&Grigas(2021)的开创性工作的凸替代损失函数,第二个基于Vlastelica等人的可区分黑盒求解器方法。 (2019)。 PYEPO提供了一个简单的接口,用于定义新的优化问题,最先进的预测 - 优化训练算法,自定义神经网络体系结构的使用以及端到端方法与端到端方法与与端到端方法的比较两阶段的方法。 PYEPO使我们能够进行一系列全面的实验,以比较沿轴上的多种端到端和两阶段方法,例如预测准确性,决策质量和运行时间,例如最短路径,多个背包和旅行等问题销售人员问题。我们讨论了这些实验中的一些经验见解,这些见解可以指导未来的研究。 PYEPO及其文档可在https://github.com/khalil-research/pyepo上找到。
translated by 谷歌翻译
价格歧视,这是指为不同客户群体的不同价格进行规定的策略,已广泛用于在线零售。虽然它有助于提高在线零售商的收入,但它可能会对公平产生严重关切,甚至违反了监管和法律。本文研究了公平限制下动态歧视性定价的问题。特别是,我们考虑一个有限的销售长度$ T $的单一产品,为一组客户提供两组客户。每组客户都有其未知的需求功能,需要学习。对于每个销售期间,卖方确定每组的价格并观察其购买行为。虽然现有文学主要侧重于最大化收入,但在动态定价文学中确保不同客户的公平尚未完全探索。在这项工作中,我们采用了(Cohen等人)的公平概念。对于价格公平性,我们在遗憾方面提出了最佳的动态定价政策,从而强制执行严格的价格公平制约。与标准$ \ sqrt {t} $ - 在线学习中的遗憾遗憾,我们表明我们案例中的最佳遗憾是$ \ tilde {\ theta}(t ^ {4/5})$。我们进一步将算法扩展到更普遍的公平概念,包括作为一个特例的需求公平。为了处理这一普通类,我们提出了一个柔和的公平约束,并开发了实现$ \ tilde {o}(t ^ {4/5})$后悔的动态定价政策。
translated by 谷歌翻译
This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems. Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to compute or mathematically not well defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task.
translated by 谷歌翻译
Decision-making problems are commonly formulated as optimization problems, which are then solved to make optimal decisions. In this work, we consider the inverse problem where we use prior decision data to uncover the underlying decision-making process in the form of a mathematical optimization model. This statistical learning problem is referred to as data-driven inverse optimization. We focus on problems where the underlying decision-making process is modeled as a convex optimization problem whose parameters are unknown. We formulate the inverse optimization problem as a bilevel program and propose an efficient block coordinate descent-based algorithm to solve large problem instances. Numerical experiments on synthetic datasets demonstrate the computational advantage of our method compared to standard commercial solvers. Moreover, the real-world utility of the proposed approach is highlighted through two realistic case studies in which we consider estimating risk preferences and learning local constraint parameters of agents in a multiplayer Nash bargaining game.
translated by 谷歌翻译
机器学习(ML)管道中的组合优化(CO)层是解决数据驱动决策任务的强大工具,但它们面临两个主要挑战。首先,CO问题的解通常是其客观参数的分段常数函数。鉴于通常使用随机梯度下降对ML管道进行训练,因此缺乏斜率信息是非常有害的。其次,标准ML损失在组合设置中不能很好地工作。越来越多的研究通过各种方法解决了这些挑战。不幸的是,缺乏维护良好的实现会减慢采用CO层的速度。在本文的基础上,我们对CO层介绍了一种概率的观点,该观点自然而然地是近似分化和结构化损失的构建。我们从文献中恢复了许多特殊情况的方法,我们也得出了新方法。基于这个统一的观点,我们提出了inferpopt.jl,一个开源的朱莉娅软件包,1)允许将任何具有线性物镜的Co Oracle转换为可区分的层,以及2)定义足够的损失以训练包含此类层的管道。我们的图书馆使用任意优化算法,并且与朱莉娅的ML生态系统完全兼容。我们使用视频游戏地图上的探索问题来证明其能力。
translated by 谷歌翻译
Outier-bubust估计是一个基本问题,已由统计学家和从业人员进行了广泛的研究。在过去的几年中,整个研究领域的融合都倾向于“算法稳定统计”,该统计数据的重点是开发可拖动的异常体 - 固定技术来解决高维估计问题。尽管存在这种融合,但跨领域的研究工作主要彼此断开。本文桥接了有关可认证的异常抗衡器估计的最新工作,该估计是机器人技术和计算机视觉中的几何感知,并在健壮的统计数据中并行工作。特别是,我们适应并扩展了最新结果对可靠的线性回归(适用于<< 50%异常值的低外壳案例)和列表可解码的回归(适用于>> 50%异常值的高淘汰案例)在机器人和视觉中通常发现的设置,其中(i)变量(例如旋转,姿势)属于非convex域,(ii)测量值是矢量值,并且(iii)未知的异常值是先验的。这里的重点是绩效保证:我们没有提出新算法,而是为投入测量提供条件,在该输入测量值下,保证现代估计算法可以在存在异常值的情况下恢复接近地面真相的估计值。这些条件是我们所谓的“估计合同”。除了现有结果的拟议扩展外,我们认为本文的主要贡献是(i)通过指出共同点和差异来统一平行的研究行,(ii)在介绍先进材料(例如,证明总和证明)中的统一行为。对从业者的可访问和独立的演讲,(iii)指出一些即时的机会和开放问题,以发出异常的几何感知。
translated by 谷歌翻译