当我们对优化模型中的不确定参数进行观察以及对协变量的同时观察时,我们研究了数据驱动决策的优化。鉴于新的协变量观察,目标是选择一个决定以此观察为条件的预期成本的决定。我们研究了三个数据驱动的框架,这些框架将机器学习预测模型集成在随机编程样本平均值近似(SAA)中,以近似解决该问题的解决方案。 SAA框架中的两个是新的,并使用了场景生成的剩余预测模型的样本外残差。我们研究的框架是灵活的,并且可以容纳参数,非参数和半参数回归技术。我们在数据生成过程,预测模型和随机程序中得出条件,在这些程序下,这些数据驱动的SaaS的解决方案是一致且渐近最佳的,并且还得出了收敛速率和有限的样本保证。计算实验验证了我们的理论结果,证明了我们数据驱动的公式比现有方法的潜在优势(即使预测模型被误解了),并说明了我们在有限的数据制度中新的数据驱动配方的好处。
translated by 谷歌翻译
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
translated by 谷歌翻译
许多实际优化问题涉及不确定的参数,这些参数具有概率分布,可以使用上下文特征信息来估算。与首先估计不确定参数的分布然后基于估计优化目标的标准方法相反,我们提出了一个\ textIt {集成条件估计 - 优化}(ICEO)框架,该框架估计了随机参数的潜在条件分布同时考虑优化问题的结构。我们将随机参数的条件分布与上下文特征之间的关系直接建模,然后以与下游优化问题对齐的目标估算概率模型。我们表明,我们的ICEO方法在适度的规律性条件下渐近一致,并以概括范围的形式提供有限的性能保证。在计算上,使用ICEO方法执行估计是一种非凸面且通常是非差异的优化问题。我们提出了一种通用方法,用于近似从估计的条件分布到通过可区分函数的最佳决策的潜在非差异映射,这极大地改善了应用于非凸问题的基于梯度的算法的性能。我们还提供了半代理案例中的多项式优化解决方案方法。还进行了数值实验,以显示我们在不同情况下的方法的经验成功,包括数据样本和模型不匹配。
translated by 谷歌翻译
This paper provides estimation and inference methods for a conditional average treatment effects (CATE) characterized by a high-dimensional parameter in both homogeneous cross-sectional and unit-heterogeneous dynamic panel data settings. In our leading example, we model CATE by interacting the base treatment variable with explanatory variables. The first step of our procedure is orthogonalization, where we partial out the controls and unit effects from the outcome and the base treatment and take the cross-fitted residuals. This step uses a novel generic cross-fitting method we design for weakly dependent time series and panel data. This method "leaves out the neighbors" when fitting nuisance components, and we theoretically power it by using Strassen's coupling. As a result, we can rely on any modern machine learning method in the first step, provided it learns the residuals well enough. Second, we construct an orthogonal (or residual) learner of CATE -- the Lasso CATE -- that regresses the outcome residual on the vector of interactions of the residualized treatment with explanatory variables. If the complexity of CATE function is simpler than that of the first-stage regression, the orthogonal learner converges faster than the single-stage regression-based learner. Third, we perform simultaneous inference on parameters of the CATE function using debiasing. We also can use ordinary least squares in the last two steps when CATE is low-dimensional. In heterogeneous panel data settings, we model the unobserved unit heterogeneity as a weakly sparse deviation from Mundlak (1978)'s model of correlated unit effects as a linear function of time-invariant covariates and make use of L1-penalization to estimate these models. We demonstrate our methods by estimating price elasticities of groceries based on scanner data. We note that our results are new even for the cross-sectional (i.i.d) case.
translated by 谷歌翻译
套索是一种高维回归的方法,当时,当协变量$ p $的订单数量或大于观测值$ n $时,通常使用它。由于两个基本原因,经典的渐近态性理论不适用于该模型:$(1)$正规风险是非平滑的; $(2)$估算器$ \ wideHat {\ boldsymbol {\ theta}} $与true参数vector $ \ boldsymbol {\ theta}^*$无法忽略。结果,标准的扰动论点是渐近正态性的传统基础。另一方面,套索估计器可以精确地以$ n $和$ p $大,$ n/p $的订单为一。这种表征首先是在使用I.I.D的高斯设计的情况下获得的。协变量:在这里,我们将其推广到具有非偏差协方差结构的高斯相关设计。这是根据更简单的``固定设计''模型表示的。我们在两个模型中各种数量的分布之间的距离上建立了非反应界限,它们在合适的稀疏类别中均匀地固定在信号上$ \ boldsymbol {\ theta}^*$。作为应用程序,我们研究了借助拉索的分布,并表明需要校正程度对于计算有效的置信区间是必要的。
translated by 谷歌翻译
由于在数据稀缺的设置中,交叉验证的性能不佳,我们提出了一个新颖的估计器,以估计数据驱动的优化策略的样本外部性能。我们的方法利用优化问题的灵敏度分析来估计梯度关于数据中噪声量的最佳客观值,并利用估计的梯度将策略的样本中的表现为依据。与交叉验证技术不同,我们的方法避免了为测试集牺牲数据,在训练和因此非常适合数据稀缺的设置时使用所有数据。我们证明了我们估计量的偏见和方差范围,这些问题与不确定的线性目标优化问题,但已知的,可能是非凸的,可行的区域。对于更专业的优化问题,从某种意义上说,可行区域“弱耦合”,我们证明结果更强。具体而言,我们在估算器的错误上提供明确的高概率界限,该估计器在策略类别上均匀地保持,并取决于问题的维度和策略类的复杂性。我们的边界表明,在轻度条件下,随着优化问题的尺寸的增长,我们的估计器的误差也会消失,即使可用数据的量仍然很小且恒定。说不同的是,我们证明我们的估计量在小型数据中的大规模政权中表现良好。最后,我们通过数值将我们提出的方法与最先进的方法进行比较,通过使用真实数据调度紧急医疗响应服务的案例研究。我们的方法提供了更准确的样本外部性能估计,并学习了表现更好的政策。
translated by 谷歌翻译
近年来目睹了采用灵活的机械学习模型进行乐器变量(IV)回归的兴趣,但仍然缺乏不确定性量化方法的发展。在这项工作中,我们为IV次数回归提出了一种新的Quasi-Bayesian程序,建立了最近开发的核化IV模型和IV回归的双/极小配方。我们通过在$ l_2 $和sobolev规范中建立最低限度的最佳收缩率,并讨论可信球的常见有效性来分析所提出的方法的频繁行为。我们进一步推出了一种可扩展的推理算法,可以扩展到与宽神经网络模型一起工作。实证评价表明,我们的方法对复杂的高维问题产生了丰富的不确定性估计。
translated by 谷歌翻译
We consider the problem of estimating a multivariate function $f_0$ of bounded variation (BV), from noisy observations $y_i = f_0(x_i) + z_i$ made at random design points $x_i \in \mathbb{R}^d$, $i=1,\ldots,n$. We study an estimator that forms the Voronoi diagram of the design points, and then solves an optimization problem that regularizes according to a certain discrete notion of total variation (TV): the sum of weighted absolute differences of parameters $\theta_i,\theta_j$ (which estimate the function values $f_0(x_i),f_0(x_j)$) at all neighboring cells $i,j$ in the Voronoi diagram. This is seen to be equivalent to a variational optimization problem that regularizes according to the usual continuum (measure-theoretic) notion of TV, once we restrict the domain to functions that are piecewise constant over the Voronoi diagram. The regression estimator under consideration hence performs (shrunken) local averaging over adaptively formed unions of Voronoi cells, and we refer to it as the Voronoigram, following the ideas in Koenker (2005), and drawing inspiration from Tukey's regressogram (Tukey, 1961). Our contributions in this paper span both the conceptual and theoretical frontiers: we discuss some of the unique properties of the Voronoigram in comparison to TV-regularized estimators that use other graph-based discretizations; we derive the asymptotic limit of the Voronoi TV functional; and we prove that the Voronoigram is minimax rate optimal (up to log factors) for estimating BV functions that are essentially bounded.
translated by 谷歌翻译
我们研究了对识别的非唯一麻烦的线性功能的通用推断,该功能定义为未识别条件矩限制的解决方案。这个问题出现在各种应用中,包括非参数仪器变量模型,未衡量的混杂性下的近端因果推断以及带有阴影变量的丢失 - 与随机数据。尽管感兴趣的线性功能(例如平均治疗效应)在适当的条件下是可以识别出的,但令人讨厌的非独家性对统计推断构成了严重的挑战,因为在这种情况下,常见的滋扰估计器可能是不稳定的,并且缺乏固定限制。在本文中,我们提出了对滋扰功能的受惩罚的最小估计器,并表明它们在这种挑战性的环境中有效推断。提出的滋扰估计器可以适应灵活的功能类别,重要的是,无论滋扰是否是唯一的,它们都可以融合到由惩罚确定的固定限制。我们使用受惩罚的滋扰估计器来形成有关感兴趣的线性功能的依据估计量,并在通用高级条件下证明其渐近正态性,这提供了渐近有效的置信区间。
translated by 谷歌翻译
Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a new test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.
translated by 谷歌翻译
我们研究只有历史数据时设计最佳学习和决策制定公式的问题。先前的工作通常承诺要进行特定的数据驱动配方,并随后尝试建立样本外的性能保证。我们以相反的方式采取了相反的方法。我们首先定义一个明智的院子棒,以测量任何数据驱动的公式的质量,然后寻求找到最佳的这种配方。在非正式的情况下,可以看到任何数据驱动的公式可以平衡估计成本与实际成本的接近度的量度,同时保证了样本外的性能水平。考虑到可接受的样本外部性能水平,我们明确地构建了一个数据驱动的配方,该配方比任何其他享有相同样本外部性能的其他配方都更接近真实成本。我们展示了三种不同的样本外绩效制度(超大型制度,指数状态和次指数制度)之间存在,最佳数据驱动配方的性质会经历相变的性质。最佳数据驱动的公式可以解释为超级稳定的公式,在指数方面是一种熵分布在熵上稳健的公式,最后是次指数制度中的方差惩罚公式。这个最终的观察揭示了这三个观察之间的令人惊讶的联系,乍一看似乎是无关的,数据驱动的配方,直到现在仍然隐藏了。
translated by 谷歌翻译
预测一组结果 - 而不是独特的结果 - 是统计学习中不确定性定量的有前途的解决方案。尽管有关于构建具有统计保证的预测集的丰富文献,但适应未知的协变量转变(实践中普遍存在的问题)还是一个严重的未解决的挑战。在本文中,我们表明具有有限样本覆盖范围保证的预测集是非信息性的,并提出了一种新型的无灵活分配方法PredSet-1Step,以有效地构建了在未知协方差转移下具有渐近覆盖范围保证的预测集。我们正式表明我们的方法是\ textIt {渐近上可能是近似正确},对大型样本的置信度有很好的覆盖误差。我们说明,在南非队列研究中,它在许多实验和有关HIV风险预测的数据集中实现了名义覆盖范围。我们的理论取决于基于一般渐近线性估计器的WALD置信区间覆盖范围的融合率的新结合。
translated by 谷歌翻译
专家(MOE)的混合是一种流行的统计和机器学习模型,由于其灵活性和效率,多年来一直引起关注。在这项工作中,我们将高斯门控的局部MOE(GLOME)和块对基因协方差局部MOE(Blome)回归模型在异质数据中呈现非线性关系,并在高维预测变量之间具有潜在的隐藏图形结构相互作用。这些模型从计算和理论角度提出了困难的统计估计和模型选择问题。本文致力于研究以混合成分数量,高斯平均专家的复杂性以及协方差矩阵的隐藏块 - 基因结构为特征的Glome或Blome模型集合中的模型选择问题。惩罚最大似然估计框架。特别是,我们建立了以弱甲骨文不平等的形式的非反应风险界限,但前提是罚款的下限。然后,在合成和真实数据集上证明了我们的模型的良好经验行为。
translated by 谷歌翻译
我们证明了连续和离散时间添加功能的浓度不平等和相关的PAC界限,用于可能是多元,不可逆扩散过程的无界函数。我们的分析依赖于通过泊松方程的方法,使我们能够考虑一系列非常广泛的指数性千古过程。这些结果增加了现有的浓度不平等,用于扩散过程的加性功能,这些功能仅适用于有界函数或从明显较小的类别中的过程的无限函数。我们通过两个截然不同的区域的例子来证明这些指数不平等的力量。考虑到在稀疏性约束下可能具有高维参数非线性漂移模型,我们应用连续的时间浓度结果来验证套索估计的受限特征值条件,这对于甲骨文不平等的推导至关重要。离散添加功能的结果用于研究未经调整的Langevin MCMC算法,用于采样中等重尾密度$ \ pi $。特别是,我们为多项式增长功能$ f $的样品蒙特卡洛估计量$ \ pi(f)提供PAC边界,以量化足够的样本和阶梯尺寸,以在规定的边距内近似具有很高的可能性。
translated by 谷歌翻译
In various fields of data science, researchers are often interested in estimating the ratio of conditional expectation functions (CEFR). Specifically in causal inference problems, it is sometimes natural to consider ratio-based treatment effects, such as odds ratios and hazard ratios, and even difference-based treatment effects are identified as CEFR in some empirically relevant settings. This chapter develops the general framework for estimation and inference on CEFR, which allows the use of flexible machine learning for infinite-dimensional nuisance parameters. In the first stage of the framework, the orthogonal signals are constructed using debiased machine learning techniques to mitigate the negative impacts of the regularization bias in the nuisance estimates on the target estimates. The signals are then combined with a novel series estimator tailored for CEFR. We derive the pointwise and uniform asymptotic results for estimation and inference on CEFR, including the validity of the Gaussian bootstrap, and provide low-level sufficient conditions to apply the proposed framework to some specific examples. We demonstrate the finite-sample performance of the series estimator constructed under the proposed framework by numerical simulations. Finally, we apply the proposed method to estimate the causal effect of the 401(k) program on household assets.
translated by 谷歌翻译
在因果推理和强盗文献中,基于观察数据的线性功能估算线性功能的问题是规范的。我们分析了首先估计治疗效果函数的广泛的两阶段程序,然后使用该数量来估计线性功能。我们证明了此类过程的均方误差上的非反应性上限:这些边界表明,为了获得非反应性最佳程序,应在特定加权$ l^2 $中最大程度地估算治疗效果的误差。 -规范。我们根据该加权规范的约束回归分析了两阶段的程序,并通过匹配非轴突局部局部最小值下限,在有限样品中建立了实例依赖性最优性。这些结果表明,除了取决于渐近效率方差之外,最佳的非质子风险除了取决于样本量支持的最富有函数类别的真实结果函数与其近似类别之间的加权规范距离。
translated by 谷歌翻译
个性化决定规则(IDR)是一个决定函数,可根据他/她观察到的特征分配给定的治疗。文献中的大多数现有工作考虑使用二进制或有限的许多治疗方案的设置。在本文中,我们专注于连续治疗设定,并提出跳跃间隔 - 学习,开发一个最大化预期结果的个性化间隔值决定规则(I2DR)。与推荐单一治疗的IDRS不同,所提出的I2DR为每个人产生了一系列治疗方案,使其在实践中实施更加灵活。为了获得最佳I2DR,我们的跳跃间隔学习方法估计通过跳转惩罚回归给予治疗和协变量的结果的条件平均值,并基于估计的结果回归函数来衍生相应的最佳I2DR。允许回归线是用于清晰的解释或深神经网络的线性,以模拟复杂的处理 - 协调会相互作用。为了实现跳跃间隔学习,我们开发了一种基于动态编程的搜索算法,其有效计算结果回归函数。当结果回归函数是处理空间的分段或连续功能时,建立所得I2DR的统计特性。我们进一步制定了一个程序,以推断(估计)最佳政策下的平均结果。进行广泛的模拟和对华法林研究的真实数据应用,以证明所提出的I2DR的经验有效性。
translated by 谷歌翻译
我们考虑在估计涉及依赖参数的高维滋扰的估计方程中估计一个低维参数。一个中心示例是因果推理中(局部)分位数处理效应((L)QTE)的有效估计方程,涉及在分位数以估计的分位数评估的协方差累积分布函数。借记机学习(DML)是一种使用灵活的机器学习方法估算高维滋扰的数据分解方法,但是将其应用于参数依赖性滋扰的问题是不切实际的。对于(L)QTE,DML要求我们学习整个协变量累积分布函数。相反,我们提出了局部偏见的机器学习(LDML),该学习避免了这一繁重的步骤,并且只需要对参数进行一次初始粗糙猜测而估算烦恼。对于(L)QTE,LDML仅涉及学习两个回归功能,这是机器学习方法的标准任务。我们证明,在松弛速率条件下,我们的估计量与使用未知的真实滋扰的不可行的估计器具有相同的有利渐近行为。因此,LDML值得注意的是,当我们必须控制许多协变量和/或灵活的关系时,如(l)QTES在((l)QTES)中,实际上可以有效地估算重要数量,例如(l)QTES。
translated by 谷歌翻译
我们研究了称为“乐观速率”(Panchenko 2002; Srebro等,2010)的统一收敛概念,用于与高斯数据的线性回归。我们的精致分析避免了现有结果中的隐藏常量和对数因子,这已知在高维设置中至关重要,特别是用于了解插值学习。作为一个特殊情况,我们的分析恢复了Koehler等人的保证。(2021年),在良性过度的过度条件下,严格地表征了低规范内插器的人口风险。但是,我们的乐观速度绑定还分析了具有任意训练错误的预测因子。这使我们能够在随机设计下恢复脊和套索回归的一些经典统计保障,并有助于我们在过度参数化制度中获得精确了解近端器的过度风险。
translated by 谷歌翻译
本文为信号去噪提供了一般交叉验证框架。然后将一般框架应用于非参数回归方法,例如趋势过滤和二元推车。然后显示所得到的交叉验证版本以获得最佳调谐的类似物所熟知的几乎相同的收敛速度。没有任何先前的趋势过滤或二元推车的理论分析。为了说明框架的一般性,我们还提出并研究了两个基本估算器的交叉验证版本;套索用于高维线性回归和矩阵估计的奇异值阈值阈值。我们的一般框架是由Chatterjee和Jafarov(2015)的想法的启发,并且可能适用于使用调整参数的广泛估算方法。
translated by 谷歌翻译