我们的目标是使机器人能够以情感方式执行功能任务,无论是响应用户的情绪状态还是表达其信心水平。先前的工作已经提出了从用户反馈中每个目标情绪的学习独立成本功能,以便机器人可以在遇到的任何情况下将其与任务和环境特定目标一起优化。但是,在建模多种情绪并且无法推广到新的情绪时,这种方法效率低下。在这项工作中,我们利用了一个事实,即情绪并非彼此独立:它们是通过价值占主导地位的潜在空间(VAD)相关的。我们的关键想法是学习一个模型,以使用用户标签映射到VAD上。考虑到轨迹的映射和目标VAD之间的距离,可以使该单个模型代表所有情绪的成本功能。结果1)所有用户反馈都可以促进学习每一个情绪; 2)机器人可以为空间中的任何情感生成轨迹,而不仅仅是少数预定义的轨迹; 3)机器人可以通过将其映射到目标VAD来对用户生成的自然语言进行情感响应。我们介绍了一种交互式学习将轨迹映射到该潜在空间并在模拟和用户研究中对其进行测试的方法。在实验中,我们使用一个简单的真空机器人以及Cassie Biped。
translated by 谷歌翻译
人类可以利用身体互动来教机器人武器。这种物理互动取决于任务,用户以及机器人到目前为止所学的内容。最先进的方法专注于从单一模态学习,或者假设机器人具有有关人类预期任务的先前信息,从而结合了多个互动类型。相比之下,在本文中,我们介绍了一种算法形式主义,该算法从演示,更正和偏好中学习。我们的方法对人类想要教机器人的任务没有任何假设。取而代之的是,我们通过将人类的输入与附近的替代方案进行比较,从头开始学习奖励模型。我们首先得出损失函数,该功能训练奖励模型的合奏,以匹配人类的示范,更正和偏好。反馈的类型和顺序取决于人类老师:我们使机器人能够被动地或积极地收集此反馈。然后,我们应用受约束的优化将我们学习的奖励转换为所需的机器人轨迹。通过模拟和用户研究,我们证明,与现有基线相比,我们提出的方法更准确地从人体互动中学习了操纵任务,尤其是当机器人面临新的或意外的目标时。我们的用户研究视频可在以下网址获得:https://youtu.be/fsujstyveku
translated by 谷歌翻译
情绪可以提供自然的交流方式,以补充许多领域中社交机器人(例如文本和语音)现有的多模式能力。我们与112、223和151名参与者进行了三项在线研究,以调查使用情绪作为搜救(SAR)机器人的交流方式的好处。在第一个实验中,我们研究了通过机器人的情绪传达与SAR情况有关的信息的可行性,从而导致了从SAR情况到情绪的映射。第二项研究使用控制控制理论是推导此类映射的替代方法。此方法更灵活,例如允许对不同的情绪集和不同机器人进行调整。在第三个实验中,我们使用LED作为表达通道为外观受限的室外现场研究机器人创建了情感表达。在各种模拟的SAR情况下,使用这些情感表达式,我们评估了这些表达式对参与者(采用救援人员的作用)的影响。我们的结果和提议的方法提供了(a)有关情感如何帮助在SAR背景下传达信息的见解,以及(b)在(模拟)SAR通信环境中添加情绪为传播方式的有效性的证据。
translated by 谷歌翻译
我们介绍了语言信息的潜在行动(LILA),这是在人机协作的背景下学习自然语言界面的框架。 Lila落在共享自主范式下:除了提供离散语言输入之外,人类还有低维控制器$ - 例如,可以向左/向右和向右移动2自由度(DOF)操纵杆$ - $操作机器人。 LILA学习使用语言来调制本控制器,为用户提供语言信息的控制空间:给定“将谷物碗放在托盘上的指示”,LILA可以学习一个二维空间,其中一个维度控制距离的距离机器人的末端执行器到碗,另一个维度控制机器人的末端效应器相对于碗上的抓地点。我们使用现实世界的用户学习评估LILA,用户可以在操作7 DOF法兰卡·埃米卡熊猫手臂时提供语言指导,以完成一系列复杂的操作任务。我们表明LILA模型不仅可以比仿制学习和终端效应器控制基线更高效,而且表现不变,但它们也是质疑优选的用户。
translated by 谷歌翻译
When robots learn reward functions using high capacity models that take raw state directly as input, they need to both learn a representation for what matters in the task -- the task ``features" -- as well as how to combine these features into a single objective. If they try to do both at once from input designed to teach the full reward function, it is easy to end up with a representation that contains spurious correlations in the data, which fails to generalize to new settings. Instead, our ultimate goal is to enable robots to identify and isolate the causal features that people actually care about and use when they represent states and behavior. Our idea is that we can tune into this representation by asking users what behaviors they consider similar: behaviors will be similar if the features that matter are similar, even if low-level behavior is different; conversely, behaviors will be different if even one of the features that matter differs. This, in turn, is what enables the robot to disambiguate between what needs to go into the representation versus what is spurious, as well as what aspects of behavior can be compressed together versus not. The notion of learning representations based on similarity has a nice parallel in contrastive learning, a self-supervised representation learning technique that maps visually similar data points to similar embeddings, where similarity is defined by a designer through data augmentation heuristics. By contrast, in order to learn the representations that people use, so we can learn their preferences and objectives, we use their definition of similarity. In simulation as well as in a user study, we show that learning through such similarity queries leads to representations that, while far from perfect, are indeed more generalizable than self-supervised and task-input alternatives.
translated by 谷歌翻译
当代机器人主义者的主要目标之一是使智能移动机器人能够在共享的人类机器人环境中平稳运行。为此目标服务的最基本必要的功能之一是在这种“社会”背景下有效的导航。结果,最近的一般社会导航的研究激增,尤其是如何处理社会导航代理之间的冲突。这些贡献介绍了各种模型,算法和评估指标,但是由于该研究领域本质上是跨学科的,因此许多相关论文是不可比较的,并且没有共同的标准词汇。这项调查的主要目标是通过引入这种通用语言,使用它来调查现有工作并突出开放问题来弥合这一差距。它首先定义社会导航的冲突,并提供其组成部分的详细分类学。然后,这项调查将现有工作映射到了本分类法中,同时使用其框架讨论论文。最后,本文提出了一些未来的研究方向和开放问题,这些方向目前正在社会导航的边界,以帮助集中于正在进行的和未来的研究。
translated by 谷歌翻译
When robots interact with humans in homes, roads, or factories the human's behavior often changes in response to the robot. Non-stationary humans are challenging for robot learners: actions the robot has learned to coordinate with the original human may fail after the human adapts to the robot. In this paper we introduce an algorithmic formalism that enables robots (i.e., ego agents) to co-adapt alongside dynamic humans (i.e., other agents) using only the robot's low-level states, actions, and rewards. A core challenge is that humans not only react to the robot's behavior, but the way in which humans react inevitably changes both over time and between users. To deal with this challenge, our insight is that -- instead of building an exact model of the human -- robots can learn and reason over high-level representations of the human's policy and policy dynamics. Applying this insight we develop RILI: Robustly Influencing Latent Intent. RILI first embeds low-level robot observations into predictions of the human's latent strategy and strategy dynamics. Next, RILI harnesses these predictions to select actions that influence the adaptive human towards advantageous, high reward behaviors over repeated interactions. We demonstrate that -- given RILI's measured performance with users sampled from an underlying distribution -- we can probabilistically bound RILI's expected performance across new humans sampled from the same distribution. Our simulated experiments compare RILI to state-of-the-art representation and reinforcement learning baselines, and show that RILI better learns to coordinate with imperfect, noisy, and time-varying agents. Finally, we conduct two user studies where RILI co-adapts alongside actual humans in a game of tag and a tower-building task. See videos of our user studies here: https://youtu.be/WYGO5amDXbQ
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
情绪分析中最突出的任务是为文本分配情绪,并了解情绪如何在语言中表现出来。自然语言处理的一个重要观察结果是,即使没有明确提及情感名称,也可以通过单独参考事件来隐式传达情绪。在心理学中,被称为评估理论的情感理论类别旨在解释事件与情感之间的联系。评估可以被形式化为变量,通过他们认为相关的事件的人们的认知评估来衡量认知评估。其中包括评估事件是否是新颖的,如果该人认为自己负责,是否与自己的目标以及许多其他人保持一致。这样的评估解释了哪些情绪是基于事件开发的,例如,新颖的情况会引起惊喜或不确定后果的人可能引起恐惧。我们在文本中分析了评估理论对情绪分析的适用性,目的是理解注释者是否可以可靠地重建评估概念,如果可以通过文本分类器预测,以及评估概念是否有助于识别情感类别。为了实现这一目标,我们通过要求人们发短信描述触发特定情绪并披露其评估的事件来编译语料库。然后,我们要求读者重建文本中的情感和评估。这种设置使我们能够衡量是否可以纯粹从文本中恢复情绪和评估,并为判断模型的绩效指标提供人体基准。我们将文本分类方法与人类注释者的比较表明,两者都可以可靠地检测出具有相似性能的情绪和评估。我们进一步表明,评估概念改善了文本中情绪的分类。
translated by 谷歌翻译
Humans have internal models of robots (like their physical capabilities), the world (like what will happen next), and their tasks (like a preferred goal). However, human internal models are not always perfect: for example, it is easy to underestimate a robot's inertia. Nevertheless, these models change and improve over time as humans gather more experience. Interestingly, robot actions influence what this experience is, and therefore influence how people's internal models change. In this work we take a step towards enabling robots to understand the influence they have, leverage it to better assist people, and help human models more quickly align with reality. Our key idea is to model the human's learning as a nonlinear dynamical system which evolves the human's internal model given new observations. We formulate a novel optimization problem to infer the human's learning dynamics from demonstrations that naturally exhibit human learning. We then formalize how robots can influence human learning by embedding the human's learning dynamics model into the robot planning problem. Although our formulations provide concrete problem statements, they are intractable to solve in full generality. We contribute an approximation that sacrifices the complexity of the human internal models we can represent, but enables robots to learn the nonlinear dynamics of these internal models. We evaluate our inference and planning methods in a suite of simulated environments and an in-person user study, where a 7DOF robotic arm teaches participants to be better teleoperators. While influencing human learning remains an open problem, our results demonstrate that this influence is possible and can be helpful in real human-robot interaction.
translated by 谷歌翻译
Imitation learning techniques aim to mimic human behavior in a given task. An agent (a learning machine) is trained to perform a task from demonstrations by learning a mapping between observations and actions. The idea of teaching by imitation has been around for many years, however, the field is gaining attention recently due to advances in computing and sensing as well as rising demand for intelligent applications. The paradigm of learning by imitation is gaining popularity because it facilitates teaching complex tasks with minimal expert knowledge of the tasks. Generic imitation learning methods could potentially reduce the problem of teaching a task to that of providing demonstrations; without the need for explicit programming or designing reward functions specific to the task. Modern sensors are able to collect and transmit high volumes of data rapidly, and processors with high computational power allow fast processing that maps the sensory data to actions in a timely manner. This opens the door for many potential AI applications that require real-time perception and reaction such as humanoid robots, self-driving vehicles, human computer interaction and computer games to name a few. However, specialized algorithms are needed to effectively and robustly learn models as learning by imitation poses its own set of challenges. In this paper, we survey imitation learning methods and present design options in different steps of the learning process. We introduce a background and motivation for the field as well as highlight challenges specific to the imitation problem. Methods for designing and evaluating imitation learning tasks are categorized and reviewed. Special attention is given to learning methods in robotics and games as these domains are the most popular in the literature and provide a wide array of problems and methodologies. We extensively discuss combining imitation learning approaches using different sources and methods, as well as incorporating other motion learning methods to enhance imitation. We also discuss the potential impact on industry, present major applications and highlight current and future research directions.
translated by 谷歌翻译
从示范中学习(LFD)方法使最终用户能够通过演示所需的行为来教机器人新任务,从而使对机器人技术的访问民主化。但是,当前的LFD框架无法快速适应异质的人类示范,也无法在无处不在的机器人技术应用中进行大规模部署。在本文中,我们提出了一个新型的LFD框架,快速的终身自适应逆增强学习(FLAIR)。我们的方法(1)利用策略来构建政策混合物,以快速适应新的示范,从而快速最终用户个性化; (2)提炼跨示范的常识,实现准确的任务推断; (3)仅在终身部署中需要扩展其模型,并保持一套简洁的原型策略,这些策略可以通过政策混合物近似所有行为。我们从经验上验证了能力可以实现适应能力(即机器人适应异质性,特定用户特定的任务偏好),效率(即机器人实现样本适应性)和可伸缩性(即,模型都会与示范范围增长,同时保持高性能)。 Flair超过了三个连续控制任务的基准测试,其政策收益的平均提高了57%,使用策略混合物进行示范建模所需的次数少78%。最后,我们在现实机器人乒乓球任务中展示了Flair的成功。
translated by 谷歌翻译
人类可以利用身体互动来教机器人武器。当人类的动力学通过示范引导机器人时,机器人学习了所需的任务。尽管先前的工作重点是机器人学习方式,但对于人类老师来说,了解其机器人正在学习的内容同样重要。视觉显示可以传达此信息;但是,我们假设仅视觉反馈就错过了人与机器人之间的物理联系。在本文中,我们介绍了一类新颖的软触觉显示器,这些显示器包裹在机器人臂上,添加信号而不会影响相互作用。我们首先设计一个气动驱动阵列,该阵列在安装方面保持灵活。然后,我们开发了这种包裹的触觉显示的单一和多维版本,并在心理物理测试和机器人学习过程中探索了人类对渲染信号的看法。我们最终发现,人们以11.4%的韦伯(Weber)分数准确区分单维反馈,并以94.5%的精度确定多维反馈。当物理教授机器人臂时,人类利用单维反馈来提供比视觉反馈更好的演示:我们包装的触觉显示会降低教学时间,同时提高演示质量。这种改进取决于包裹的触觉显示的位置和分布。您可以在此处查看我们的设备和实验的视频:https://youtu.be/ypcmgeqsjdm
translated by 谷歌翻译
模块化机器人可以在每天重新排列到新设计中,通过为每项新任务形成定制机器人来处理各种各样的任务。但是,重新配置的机制是不够的:每个设计还需要自己独特的控制策略。人们可以从头开始为每个新设计制作一个政策,但这种方法不可扩展,特别是给出了甚至一小组模块可以生成的大量设计。相反,我们创建了一个模块化策略框架,策略结构在硬件排列上有调节,并仅使用一个培训过程来创建控制各种设计的策略。我们的方法利用了模块化机器人的运动学可以表示为设计图,其中节点作为模块和边缘作为它们之间的连接。给定机器人,它的设计图用于创建具有相同结构的策略图,其中每个节点包含一个深神经网络,以及通过共享参数的相同类型共享知识的模块(例如,Hexapod上的所有腿都相同网络参数)。我们开发了一种基于模型的强化学习算法,交织模型学习和轨迹优化,以培训策略。我们展示了模块化政策推广到培训期间没有看到的大量设计,没有任何额外的学习。最后,我们展示了与模拟和真实机器人一起控制各种设计的政策。
translated by 谷歌翻译
如果机器人曾经实现与动物所展示的机器人相当的自动运动,则它们必须获得在损害,故障或环境条件下快速恢复运动行为的能力,从而损害了其有效移动的能力。我们提出了一种方法,该方法使我们的机器人和模拟机器人能够在几十次尝试中恢复自由运动行为的高度。我们的方法采用行为规范,以等级的差异约束来表达所需的行为。我们展示了如何通过编码模板来考虑这些约束,从而产生了将先前优化的行为推广到新情况下以快速学习的形式概括的秘诀。我们进一步说明,在数据驱动的上下文中,足够的限制通常很容易确定。作为例证,我们证明了我们在物理7 DOF六型六杆元机器人上的恢复方法,以及对6 DOF 2D运动机制的模拟。在这两种情况下,我们恢复了与先前优化的运动在功能上无法区分的行为。
translated by 谷歌翻译
我们研究了实时的协作机器人(Cobot)处理,Cobot在人类命令下操纵工件。当人类直接处理工件时,这是有用的。但是,在可能的操作中难以使COBOT易于命令和灵活。在这项工作中,我们提出了一个实时协作机器人处理(RTCOHand)框架,其允许通过用户定制的动态手势控制COBOT。由于用户,人类运动不确定性和嘈杂的人类投入的变化,这很难。我们将任务塑造为概率的生成过程,称为条件协作处理过程(CCHP),并从人类的合作中学习。我们彻底评估了CCHP的适应性和稳健性,并将我们的方法应用于Kinova Gen3机器人手臂的实时Cobot处理任务。我们实现了与经验丰富和新用户的无缝人员合作。与古典控制器相比,RTCEHAND允许更复杂的操作和更低的用户认知负担。它还消除了对试验和错误的需求,在安全关键任务中呈现。
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译
本文提出了一种方法,该方法使机器人能够从人类的定向校正中逐渐学习控制目标函数。现有方法从人类的幅度校正中学习,并且需要人类仔细选择校正幅度,否则可以很容易地导致过度校正和学习效率低下。所提出的方法仅需要人类的定向校正 - 校正,该校正仅指示控制变化的方向,而不会指示其幅度 - 在机器人运动期间的某些时间实例应用。我们仅假设人类的校正,无论其幅度如何,在一个方向上指向机器人当前运动相对于隐含控制目标函数。因此,人类的有效修正总是占校正空间的一半。所提出的方法使用校正的方向来基于切割平面技术更新目标函数的估计。我们建立了理论结果,以证明该过程保证了学习目标函数的收敛到隐含的目标。通过数值例子,对两个人机游戏的用户研究以及真实世界的四轮车实验进行了拟议的方法。结果证实了该方法的收敛性,并表明该方法更有效(成功率较高),有效/轻松(需要较少人力校正),可访问(更少的早期浪费的试验)而不是最先进的机器人交互式学习计划。
translated by 谷歌翻译
在家庭环境中的机器人辅助喂养是具有挑战性的,因为它需要机器人来产生轨迹,从而有效地将不同形状的食物带入口腔,同时确保用户舒适。我们的主要洞察力是,为了解决这一挑战,机器人必须平衡喂食食品的效率,舒适的每一件咬。我们将舒适性和效率正式纳入运动规划。我们提出了一种基于启发式导向的双向探索随机树(H-BIRRT)的方法,可以使用我们发达的咬合效率和舒适启发式和学习的约束模型选择任意食品几何形状和形状的咬合转移轨迹。实际机器人评估表明,优化舒适性和效率显着优于基于固定姿势的方法,并且用户更优选我们的方法,比仅最大限度地提高用户舒适度的方法。视频和附录在我们的网站上找到:https://sites.google.com/view/comfortbitetransfer-icra22/home。
translated by 谷歌翻译
机器人需要能够从用户学习概念,以便将其功能调整到每个用户的唯一任务。但是当机器人在高维输入上运行时,如图像或点云,这是不切实际的:机器人需要一种不切实际的人类努力来学习新概念。为了解决这一挑战,我们提出了一种新方法,其中机器人学习概念的低维变体,并使用它来生成更大的数据集,用于在高维空间中学习概念。这使得只有在训练时间等地访问的语义上有意义的特权信息,如对象姿势和边界框,这允许更丰富的人类交互来加速学习。我们通过学习介词概念来评估我们的方法,这些概念描述了对象状态或多对象关系,如上面,近,近或对齐,这是用户规范任务目标和机器人的执行约束的关键。使用模拟人类,我们表明,与直接在高维空间中的学习概念相比,我们的方法可以提高样本复杂性。我们还展示了学习概念在7 DOF法兰卡熊猫机器人上的运动规划任务中的效用。
translated by 谷歌翻译