随机上下文的匪徒问题,建造了勘探和开发之间的权衡取舍,具有许多真实的应用,包括推荐系统,在线广告和临床试验。与许多其他机器学习算法一样,上下文匪徒算法通常具有一个或多个超参数。例如,在大多数最佳的随机上下文匪徒算法中,有一个未知的探索参数可以控制勘探和开发之间的权衡。适当的超参数选择对于上下文的匪徒算法表现良好至关重要。但是,由于没有预采用的数据集,因此必须使用离线调谐方法在上下文匪徒环境中选择超参数,并且必须实时做出决策。为了解决这个问题,我们首先提出了一个两层匪徒结构,用于自动调整勘探参数并将其进一步推广到联合匪徒框架,该框架可以在上下文的匪徒环境中动态学习多个超参数。我们得出了我们提议的联合匪徒框架的遗憾界限,并表明它可以避免对要调整的超参数的数量成倍依赖。此外,它在某些情况下达到了最佳的遗憾界限。联合匪徒框架足够通用,可以在许多流行的上下文匪徒算法(例如Linucb,Lints,UCB-GLM等)中处理调整任务。在合成数据集和真实数据集上进行了实验,以验证我们提出的框架的有效性。
translated by 谷歌翻译
我们研究汤普森采样对上下文匪徒的效率。现有的基于汤普森采样的算法需要构建后验分布的拉普拉斯近似(即高斯分布),这是在一般协方差矩阵中的高维应用中效率低下的效率。此外,高斯近似可能不是对一般奖励产生功能的后验分布的良好替代物。我们提出了一种有效的后采样算法,即Langevin Monte Carlo Thompson采样(LMC-TS),该采样(LMC-TS)使用Markov Chain Monte Carlo(MCMC)方法直接从上下文斑块中的后验分布中直接采样。我们的方法在计算上是有效的,因为它只需要执行嘈杂的梯度下降更新而不构建后验分布的拉普拉斯近似。我们证明,所提出的算法实现了相同的sublinear遗憾,作为一种特殊情况的汤普森采样算法,是上下文匪徒的特殊情况,即线性上下文的强盗。我们在不同上下文匪徒模型上对合成数据和现实世界数据集进行实验,这表明直接从后验进行采样既具有计算上有效又具有竞争性能。
translated by 谷歌翻译
我们研究了随机线性匪徒(LB)中的两个模型选择设置。在我们将其称为特征选择的第一个设置中,LB问题的预期奖励是$ M $特征映射(模型)中至少一个的线性跨度。在第二个设置中,LB问题的奖励参数由$ \ MATHBB r ^ d $中表示(可能)重叠球的$ M $模型任意选择。但是,该代理只能访问错过模型,即球的中心和半径的估计。我们将此设置称为参数选择。对于每个设置,我们开发和分析一种基于从匪徒减少到全信息问题的算法。这允许我们获得遗憾的界限(最多超过$ \ sqrt {\ log m} $ factor)而不是已知真实模型的情况。我们参数选择算法的遗憾也以模型不确定性对数进行缩放。最后,我们经验展现了使用合成和现实世界实验的算法的有效性。
translated by 谷歌翻译
We study bandit model selection in stochastic environments. Our approach relies on a meta-algorithm that selects between candidate base algorithms. We develop a meta-algorithm-base algorithm abstraction that can work with general classes of base algorithms and different type of adversarial meta-algorithms. Our methods rely on a novel and generic smoothing transformation for bandit algorithms that permits us to obtain optimal $O(\sqrt{T})$ model selection guarantees for stochastic contextual bandit problems as long as the optimal base algorithm satisfies a high probability regret guarantee. We show through a lower bound that even when one of the base algorithms has $O(\log T)$ regret, in general it is impossible to get better than $\Omega(\sqrt{T})$ regret in model selection, even asymptotically. Using our techniques, we address model selection in a variety of problems such as misspecified linear contextual bandits, linear bandit with unknown dimension and reinforcement learning with unknown feature maps. Our algorithm requires the knowledge of the optimal base regret to adjust the meta-algorithm learning rate. We show that without such prior knowledge any meta-algorithm can suffer a regret larger than the optimal base regret.
translated by 谷歌翻译
We consider the stochastic linear contextual bandit problem with high-dimensional features. We analyze the Thompson sampling (TS) algorithm, using special classes of sparsity-inducing priors (e.g. spike-and-slab) to model the unknown parameter, and provide a nearly optimal upper bound on the expected cumulative regret. To the best of our knowledge, this is the first work that provides theoretical guarantees of Thompson sampling in high dimensional and sparse contextual bandits. For faster computation, we use spike-and-slab prior to model the unknown parameter and variational inference instead of MCMC to approximate the posterior distribution. Extensive simulations demonstrate improved performance of our proposed algorithm over existing ones.
translated by 谷歌翻译
汤普森抽样(TS)吸引了对强盗区域的兴趣。它在20世纪30年代介绍,但近年来尚未经过理论上证明。其在组合多武装强盗(CMAB)设置中的所有分析都需要精确的Oracle来提供任何输入的最佳解决方案。然而,这种Oracle通常是不可行的,因为许多组合优化问题是NP - 硬,并且只有近似oracles可用。一个例子(王和陈,2018)已经表明TS的失败来学习近似Oracle。但是,此Oracle罕见,仅用于特定问题实例。它仍然是一个开放的问题,无论TS的收敛分析是否可以扩展到CMAB中的精确oracle。在本文中,我们在贪婪的Oracle下研究了这个问题,这是一个常见的(近似)Oracle,具有理论上的保证来解决许多(离线)组合优化问题。我们提供了一个问题依赖性遗憾的遗憾下限为$ \ omega(\ log t / delta ^ 2)$,以量化Ts的硬度来解决贪婪的甲骨文的CMAB问题,其中$ T $是时间范围和$ Delta $是一些奖励差距。我们还提供几乎匹配的遗憾上限。这些是TS解决CMAB与常见近似甲骨文的第一个理论结果,并打破TS无法使用近似神谕的误解。
translated by 谷歌翻译
富达匪徒问题是$ k $的武器问题的变体,其中每个臂的奖励通过提供额外收益的富达奖励来增强,这取决于播放器如何对该臂进行“忠诚”在过去。我们提出了两种忠诚的模型。在忠诚点模型中,额外奖励的数量取决于手臂之前播放的次数。在订阅模型中,额外的奖励取决于手臂的连续绘制的当前数量。我们考虑随机和对抗问题。由于单臂策略在随机问题中并不总是最佳,因此对抗性环境中遗憾的概念需要仔细调整。我们介绍了三个可能的遗憾和调查,这可以是偏执的偏执。我们详细介绍了增加,减少和优惠券的特殊情况(玩家在手臂的每辆M $播放后获得额外的奖励)保真奖励。对于不一定享受载体遗憾的模型,我们提供了最糟糕的下限。对于那些展示Sublinear遗憾的模型,我们提供算法并绑定他们的遗憾。
translated by 谷歌翻译
在本文中,我们研究了汤普森采样(TS)方法的应用到随机组合多臂匪徒(CMAB)框架中。当所有基本臂的结果分布都是独立的,并获得$ o(m \ log k _ {\ max} \ log t / \ delta_时,我们首先分析一般CMAB模型的标准TS算法。 {\ min})$,其中$ m $是基本武器的数量,$ k _ {\ max} $是最大的超级臂的大小,$ t $是时间范围,而$ \ delta _ {\ min} $是最佳解决方案的预期奖励与任何非最佳解决方案之间的最小差距。这种遗憾的上限比$ o(m(\ log k _ {\ max})^2 \ log t / \ delta _ {\ min})$更好。此外,我们的新颖分析技术可以帮助收紧其他基于UCB的政策(例如ESC)的遗憾界限,因为我们改善了计算累积遗憾的方法。然后,我们考虑Matroid Bandit设置(CMAB模型的特殊类别),在这里我们可以删除跨武器的独立性假设,并实现与下限匹配的遗憾上限。除了遗憾的上限外,我们还指出,一个人不能直接替换确切的离线甲骨文(将离线问题实例的参数作为输入,并在此实例下输出确切的最佳操作),用TS算法中的近似oracle替换了ts算法的近似值。甚至经典的mAb问题。最后,我们使用一些实验来显示TS遗憾与其他现有算法之间的比较,实验结果表明TS优于现有基准。
translated by 谷歌翻译
汤普森采样(TS)是解决上下文多武装强盗问题最有效的算法之一。在本文中,我们提出了一种新的算法,称为神经汤普森采样,这适应了深度神经网络,用于勘探和剥削。在我们的算法的核心是一种新的奖励的后分布,其平均值是神经网络近似器,并且其方差建立在相应神经网络的神经切线特征上。我们证明,如果底层奖励函数是有界的,则可以保证所提出的算法来实现$ \ mathcal {o}(t ^ {1/2})$的累积遗憾,它与其他上下文强盗算法的遗憾匹配总轮数量$ t $。各种数据集中其他基准强盗算法的实验比较证实了我们的理论。
translated by 谷歌翻译
我们为随机线性匪徒问题提出了一种新的基于自举的在线算法。关键的想法是采用残留的自举勘探,在该探索中,代理商通过重新采样平均奖励估算的残差来估算下一步奖励。我们的算法,随机线性匪徒(\ texttt {linreboot})的残留bootstrap探索,从其重新采样分布中估算了线性奖励,并以最高的奖励估计拉动了手臂。特别是,我们为理论框架做出了一个理论框架,以使基于自举的探索机制在随机线性匪徒问题中脱颖而出。关键见解是,Bootstrap探索的强度基于在线学习模型和残差的重新采样分布之间的乐观情绪。这样的观察使我们能够证明所提出的\ texttt {linreboot}确保了高概率$ \ tilde {o}(d \ sqrt {n})$ sub-linear在温和条件下的遗憾。我们的实验支持\ texttt {重新启动}原理在线性匪徒问题的各种公式中的简易概括性,并显示了\ texttt {linreboot}的显着计算效率。
translated by 谷歌翻译
ELO评级系统被广泛采用来评估(国际象棋)游戏和体育运动者的技能。最近,它还集成到了评估计算机化AI代理的性能时的机器学习算法中。然而,精确估计ELO评级(对于顶级球员)通常需要许多轮竞争,这可能是昂贵的。在本文中,为了提高ELO评估的样本效率(对于顶级球员),我们提出了一种有效的在线匹配调度算法。具体而言,我们通过Dueling Birits框架识别并匹配顶级播放器并将强盗算法定制到ELO的梯度更新。我们表明它减少了每一步记忆和时间复杂度来恒定,与需要$ O(t)$时间的传统似然最大化方法相比。我们的算法对$ \ tilde {o}(\ sqrt {t})$,Sublinear在竞争回合的数量中有遗憾的保证,并且已经扩展到多维ELO评级,用于处理风情游戏。我们经验证明我们的方法在各种游戏任务上实现了卓越的收敛速度和时间效率。
translated by 谷歌翻译
我们为线性上下文匪徒提出了一种新颖的算法(\ sqrt {dt \ log t})$遗憾,其中$ d $是上下文的尺寸,$ t $是时间范围。我们提出的算法配备了一种新型估计量,其中探索通过显式随机化嵌入。根据随机化的不同,我们提出的估计器从所有武器的上下文或选定的上下文中都取得了贡献。我们为我们的估计器建立了一个自称的绑定,这使累积遗憾的新颖分解为依赖添加剂的术语而不是乘法术语。在我们的问题设置下,我们还证明了$ \ omega(\ sqrt {dt})$的新颖下限。因此,我们提出的算法的遗憾与对数因素的下限相匹配。数值实验支持理论保证,并表明我们所提出的方法的表现优于现有的线性匪徒算法。
translated by 谷歌翻译
我们研究对线性随机匪徒的对抗攻击:通过操纵奖励,对手旨在控制匪徒的行为。也许令人惊讶的是,我们首先表明某些攻击目标永远无法实现。这与无上下文的随机匪徒形成了鲜明的对比,并且本质上是由于线性随机陆上的臂之间的相关性。在这一发现的激励下,本文研究了$ k $武装的线性匪徒环境的攻击性。我们首先根据武器上下文向量的几何形状提供了攻击性的完全必要性和充分性表征。然后,我们提出了针对Linucb和鲁棒相消除的两阶段攻击方法。该方法首先断言给定环境是否可攻击;而且,如果是的话,它会付出巨大的奖励,以强迫算法仅使用sublinear成本来拉动目标臂线性时间。数值实验进一步验证了拟议攻击方法的有效性和成本效益。
translated by 谷歌翻译
我们研究了批量线性上下文匪徒的最佳批量遗憾权衡。对于任何批次数$ M $,操作次数$ k $,时间范围$ t $和维度$ d $,我们提供了一种算法,并证明了其遗憾的保证,这是由于技术原因,具有两阶段表达作为时间的时间$ t $ grose。我们还证明了一个令人奇迹的定理,令人惊讶地显示了在问题参数的“问题参数”中的两相遗憾(最高〜对数因子)的最优性,因此建立了确切的批量后悔权衡。与最近的工作\ citep {ruan2020linear}相比,这表明$ m = o(\ log \ log t)$批次实现无需批处理限制的渐近最佳遗憾的渐近最佳遗憾,我们的算法更简单,更易于实际实现。此外,我们的算法实现了所有$ t \ geq d $的最佳遗憾,而\ citep {ruan2020linear}要求$ t $大于$ d $的不切实际的大多项式。沿着我们的分析,我们还证明了一种新的矩阵集中不平等,依赖于他们的动态上限,这是我们的知识,这是其文学中的第一个和独立兴趣。
translated by 谷歌翻译
我们建议使用$ \ tilde {o}(\ sqrt {\ kappa^{ - 1} \ phi t} \ phi t})$ hears $ t $ the $ \ phi $ phi $是$ \ phi $是最olutimut,$ \ phi $是$ \ phi $,我们提出了一种用于广义线性奖励的新颖的上下文强盗算法。上下文协方差和$ \ kappa $的特征值是奖励差异的下限。在几种实际情况下,$ \ phi = o(d)$,我们的结果是带有$ \ sqrt {d} $的广义线性模型(GLM)土匪的第一个遗憾,而无需依赖Auer [2002]的方法。我们使用一个称为双重运动估计器的新型估计器(Doubly-bobust(DR)估计器的子类,但误差较紧,我们就实现了这种结合。 Auer [2002]的方法通过丢弃观察到的奖励来实现独立性,而我们的算法则在使用我们的DDR估计器的所有情况下实现了独立性。我们还提供了一个$ o(\ kappa^{ - 1} \ phi \ log(nt)\ log t)$遗憾在概率的边缘条件下以$ n $武器约束。 Bastani和Bayati [2020]和Bastani等人给出了遗憾的界限。 [2021]在环境中,所有臂都是共同的,但系数是特定的。当所有臂的上下文都不同,但系数很常见时,我们的第一个遗憾是在线性模型或GLM的边缘条件下绑定的。我们使用合成数据和真实示例进行实证研究,证明了我们的算法的有效性。
translated by 谷歌翻译
我们考虑随机环境中在线线性回归的问题。我们派生了在线岭回归和前向算法的高概率遗憾。这使我们能够更准确地比较在线回归算法并消除有界观测和预测的假设。我们的研究由于其增强的界限和鲁棒性对正则化参数而代替脊,所以提出了前向算法的倡导者。此外,我们解释了如何将其集成在涉及线性函数近似的算法中以消除界限假设,而不会恶化理论界限。我们在线性强盗设置展示了这种修改,其中它产生了改进的遗憾范围。最后,我们提供数字实验来说明我们的结果并赞同我们的直觉。
translated by 谷歌翻译
已经研究了几十年的上下文多武装匪,并适应了各种应用,如在线广告和个性化推荐。为了解决匪徒的开发探索权衡,有三种主要技术:epsilon - 贪婪,汤普森采样(TS)和上置信度(UCB)。在最近的文献中,线性上下窗匪徒采用了脊回归来估计奖励功能,并将其与TS或UCB策略结合起来的探索。但是,这行作品明确假设奖励基于ARM向量的线性函数,在现实世界数据集中可能不是真的。为了克服这一挑战,已经提出了一系列神经基的强盗算法,其中分配了神经网络以学习基础奖励功能,并且TS或UCB适于探索。在本文中,我们提出了一种具有新的探索策略的神经基匪徒方法。除了利用神经网络(开发网络)外学习奖励功能之外,与目前估计的奖励相比,EE-Net采用另一个神经网络(勘探网络)来自适应地学习潜在的增益。然后,构建决策者以将输出与剥削和探索网络组合起来。我们证明了EE-Net实现了$ \ mathcal {o}(\ sqrt {t \ log t})$后悔,它比现有最先进的神经强盗算法更紧密($ \ mathcal {o}(\基于UCB和TS的SQRT {T} \ log t)$。通过对四世界数据集的广泛实验,我们表明EE-Net优于现有的线性和神经匪徒的方法。
translated by 谷歌翻译
我们在非静止环境中调查在线凸优化,然后选择\ emph {动态后悔}作为性能测量,定义为在线算法产生的累积损失与任何可行比较器序列之间的差异。让$ t $是$ p_t $ be的路径长度,基本上反映了环境的非平稳性,最先进的动态遗憾是$ \ mathcal {o}(\ sqrt {t( 1 + p_t)})$。虽然这一界限被证明是凸函数最佳的最低限度,但在本文中,我们证明可以进一步提高一些简单的问题实例的保证,特别是当在线功能平滑时。具体而言,我们提出了新的在线算法,可以利用平滑度并替换动态遗憾的$ t $替换依据\ {问题依赖性}数量:损耗函数梯度的变化,比较器序列的累积损失,以及比较器序列的累积损失最低术语的最低限度。这些数量是大多数$ \ mathcal {o}(t)$,良性环境中可能更小。因此,我们的结果适应了问题的内在难度,因为边界比现有结果更严格,以便在最坏的情况下保证相同的速率。值得注意的是,我们的算法只需要\ emph {一个}渐变,这与开发的方法共享相同的渐变查询复杂性,以优化静态遗憾。作为进一步的应用,我们将来自全信息设置的结果扩展到具有两点反馈的强盗凸优化,从而达到此类强盗任务的第一个相关的动态遗憾。
translated by 谷歌翻译
元,多任务和联合学习可以全部被视为解决类似的任务,从反映任务相似之处的未知分发中汲取类似的任务。在这项工作中,我们提供了所有这些问题的统一视图,因为在分层贝叶斯匪徒中采取行动。我们分析了一种自然的分层汤普森采样算法(HIERTS),可以应用于此类中的任何问题。我们的遗憾界限在此类问题的许多情况下持有,包括当任务顺序或并行解决时;并捕获问题的结构,使得遗憾地随着任务的宽度而减少。我们的证据依赖于新的总方差分解,可以应用于其他图形模型结构。最后,我们的理论是由实验补充的,表明层次结构有助于任务之间的知识共享。这证实了分层贝叶斯匪徒是一种普遍和统计学的工具,用于学习与类似的匪徒任务进行行动。
translated by 谷歌翻译
我们研究上下文多军匪徒设置中的排名问题。学习代理在每个时间步骤中选择一个有序的项目列表,并观察每个位置的随机结果。在在线推荐系统中,显示最有吸引力的项目的有序列表将不是最佳选择,因为位置和项目依赖性都会带来复杂的奖励功能。一个非常天真的例子是,当所有最有吸引力的物品都来自同一类别时,缺乏多样性。我们为此问题在“排序列表”和“设计UCB”和Thompson采样类型算法中对位置和项目依赖性建模。我们证明,遗憾超过$ t $ rounds和$ l $ positions是$ \ tilde {o}(l \ sqrt {d t})$,它的订单与以前在$ t $和$ t $方面的作品相同仅用$ L $线性增加。我们的工作将现有的研究推广到多个方向,包括位置折扣是特定情况的位置依赖性,并提出了更一般的背景匪徒模型。
translated by 谷歌翻译