边缘计算是加速机器学习算法支持移动设备的流行目标,而无需通信潜伏在云中处理它们。机器学习的边缘部署主要考虑传统问题,例如其安装的交换约束(尺寸,重量和功率)。但是,考虑到体现能量和碳的重要贡献,这种指标不足以考虑计算的环境影响。在本文中,我们探讨了用于推理和在线培训的卷积神经网络加速引擎的权衡。特别是,我们探讨了内存处理(PIM)方法,移动GPU加速器以及最近发布的FPGA的使用,并将它们与新颖的赛车记忆PIM进行比较。用赛车记忆PIM替换支持PIM的DDR3可以恢复其体现的能量,以至于1年。对于高活动比,与支持PIM的赛车记忆相比,移动GPU可以更可持续,但具有更高的体现能量可以克服。
translated by 谷歌翻译
Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without sacrificing application accuracy or increasing hardware cost are critical to the wide deployment of DNNs in AI systems.This article aims to provide a comprehensive tutorial and survey about the recent advances towards the goal of enabling efficient processing of DNNs. Specifically, it will provide an overview of DNNs, discuss various hardware platforms and architectures that support DNNs, and highlight key trends in reducing the computation cost of DNNs either solely via hardware design changes or via joint hardware design and DNN algorithm changes. It will also summarize various development resources that enable researchers and practitioners to quickly get started in this field, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of DNN hardware designs, optionally including algorithmic co-designs, being proposed in academia and industry.The reader will take away the following concepts from this article: understand the key design considerations for DNNs; be able to evaluate different DNN hardware implementations with benchmarks and comparison metrics; understand the trade-offs between various hardware architectures and platforms; be able to evaluate the utility of various DNN design techniques for efficient processing; and understand recent implementation trends and opportunities.
translated by 谷歌翻译
超比计算(HDC)是由大脑启发的新出现的计算框架,其在数千个尺寸上运行以模拟认知的载体。与运行数量的传统计算框架不同,HDC,如大脑,使用高维随机向量并能够一次学习。 HDC基于明确定义的算术运算集,并且是高度误差的。 HDC的核心运营操纵高清vectors以散装比特方式,提供许多机会利用并行性。遗憾的是,在传统的von-neuman架构上,处理器中的高清矢量的连续运动可以使认知任务过度缓慢和能量密集。硬件加速器只会略微改进相关的指标。相反,只有使用新兴铭文设备内存的HDC框架的部分实施,已报告了相当大的性能/能源收益。本文介绍了一种基于赛道内存(RTM)的架构,以便在内存中进行和加速整个HDC框架。所提出的解决方案需要最小的附加CMOS电路,并在称为横向读取(TR)的RTM中跨多个域的读取操作,以实现排他性或(XOR)和添加操作。为了最小化CMOS电路的开销,我们提出了一种基于RTM纳米线的计数机制,其利用TR操作和标准RTM操作。使用语言识别作为用例,分别与FPGA设计相比,整体运行时和能耗降低了7.8倍和5.3倍。与最先进的内存实现相比,所提出的HDC系统将能耗降低8.6倍。
translated by 谷歌翻译
嵌入式机器学习(ML)系统现在已成为部署ML服务任务的主要平台,预计对于培训ML模型而言非常重要。随之而来的是,在严格的内存约束下,总体高效部署,尤其是低功率和高吞吐量实现的挑战。在这种情况下,与常规SRAM相比,由于其非挥发性,较高的细胞密度和可伸缩性特征,STT-MRAM和SOT-MRAM等非易失性记忆(NVM)技术具有显着优势。虽然先前的工作已经调查了NVM对通用应用的几种架构含义,但在这项工作中,我们提出了DeepNVM ++,这是一个综合框架,用于表征,模型和分析基于NVM的GPU架构中的基于NVM的CACHES,通过结合技术特异性的技术应用程序(DL)应用程序(DL)应用程序。电路级模型和各种DL工作负载的实际内存行为。 DEEPNVM ++依赖于使用常规SRAM和新兴STT-MRAM和SOT-MRAM Technologies实施的最后级别缓存的ISO容量和ISO区域性能和能量模型。在ISO容量的情况下,与常规的SRAM相比,STT-MRAM和SOT-MRAM可提供高达3.8倍和4.7倍的能量延迟产品(EDP)的降低以及2.4倍和2.8倍面积。在ISO-AREA假设下,STT-MRAM和SOT-MRAM可提供高达2.2倍和2.4倍的EDP降低,并且与SRAM相比,分别可容纳2.3倍和3.3倍的缓存能力。我们还执行可伸缩性分析,并表明与大型缓存能力相比,STT-MRAM和SOT-MRAM与SRAM相比实现了EDP的降低。 DEEPNVM ++在STT-/SOT-MRAM技术上进行了证明,可用于DL应用中GPU中最后一级缓存的任何NVM技术的表征,建模和分析。
translated by 谷歌翻译
基于von-neumann架构的传统计算系统,数据密集型工作负载和应用程序(如机器学习)和应用程序都是基本上限制的。随着数据移动操作和能量消耗成为计算系统设计中的关键瓶颈,对近数据处理(NDP),机器学习和特别是神经网络(NN)的加速器等非传统方法的兴趣显着增加。诸如Reram和3D堆叠的新兴内存技术,这是有效地架构基于NN的基于NN的加速器,因为它们的工作能力是:高密度/低能量存储和近记忆计算/搜索引擎。在本文中,我们提出了一种为NN设计NDP架构的技术调查。通过基于所采用的内存技术对技术进行分类,我们强调了它们的相似之处和差异。最后,我们讨论了需要探索的开放挑战和未来的观点,以便改进和扩展未来计算平台的NDP架构。本文对计算机学习领域的计算机架构师,芯片设计师和研究人员来说是有价值的。
translated by 谷歌翻译
在小型电池约束的物流设备上部署现代TinyML任务需要高计算能效。使用非易失性存储器(NVM)的模拟内存计算(IMC)承诺在深神经网络(DNN)推理中的主要效率提高,并用作DNN权重的片上存储器存储器。然而,在系统级别尚未完全理解IMC的功能灵活性限制及其对性能,能量和面积效率的影响。为了目标实际的端到端的IOT应用程序,IMC阵列必须括在异构可编程系统中,引入我们旨在解决这项工作的新系统级挑战。我们介绍了一个非均相紧密的聚类架构,整合了8个RISC-V核心,内存计算加速器(IMA)和数字加速器。我们在高度异构的工作负载上基准测试,例如来自MobileNetv2的瓶颈层,显示出11.5倍的性能和9.5倍的能效改进,而在核心上高度优化并行执行相比。此外,我们通过将我们的异构架构缩放到多阵列加速器,探讨了在IMC阵列资源方面对全移动级DNN(MobileNetv2)的端到端推断的要求。我们的结果表明,我们的解决方案在MobileNetv2的端到端推断上,在执行延迟方面比现有的可编程架构更好,比最先进的异构解决方案更好的数量级集成内存计算模拟核心。
translated by 谷歌翻译
当今的大多数计算机视觉管道都是围绕深神经网络构建的,卷积操作需要大部分一般的计算工作。与标准算法相比,Winograd卷积算法以更少的MAC计算卷积,当使用具有2x2尺寸瓷砖$ F_2 $的版本时,3x3卷积的操作计数为2.25倍。即使收益很大,Winograd算法具有较大的瓷砖尺寸,即$ f_4 $,在提高吞吐量和能源效率方面具有更大的潜力,因为它将所需的MAC降低了4倍。不幸的是,具有较大瓷砖尺寸的Winograd算法引入了数值问题,这些问题阻止了其在整数域特异性加速器上的使用和更高的计算开销,以在空间和Winograd域之间转换输入和输出数据。为了解锁Winograd $ F_4 $的全部潜力,我们提出了一种新颖的Tap-Wise量化方法,该方法克服了使用较大瓷砖的数值问题,从而实现了仅整数的推断。此外,我们介绍了以功率和区域效率的方式处理Winograd转换的自定义硬件单元,并展示了如何将此类自定义模块集成到工业级,可编程的DSA中。对大量最先进的计算机视觉基准进行了广泛的实验评估表明,Tap-Wise量化算法使量化的Winograd $ F_4 $网络几乎与FP32基线一样准确。 Winograd增强的DSA可实现高达1.85倍的能源效率,最高可用于最先进的细分和检测网络的端到端速度高达1.83倍。
translated by 谷歌翻译
丹尼德缩放结束和摩尔法的放缓使能量使用数据中心在不可持续的道路上。数据中心已经是全球电力使用的大部分,应用需求以快速缩放。我们认为,数据中心计算的碳强度的大幅减少可以通过以软件为中心的方法来实现:通过修改系统API,通过修改系统API来使应用程序开发人员可见的能量和碳,使其成为可能进行知情的贸易性能和碳排放之间,并通过提高应用程序编程水平,以便灵活地使用更节能的计算和存储方法。我们还为系统软件奠定了一个研究议程,以减少数据中心计算的碳足迹。
translated by 谷歌翻译
Progress in machine learning (ML) comes with a cost to the environment, given that training ML models requires significant computational resources, energy and materials. In the present article, we aim to quantify the carbon footprint of BLOOM, a 176-billion parameter language model, across its life cycle. We estimate that BLOOM's final training emitted approximately 24.7 tonnes of~\carboneq~if we consider only the dynamic power consumption, and 50.5 tonnes if we account for all processes ranging from equipment manufacturing to energy-based operational consumption. We also study the energy requirements and carbon emissions of its deployment for inference via an API endpoint receiving user queries in real-time. We conclude with a discussion regarding the difficulty of precisely estimating the carbon footprint of ML models and future research directions that can contribute towards improving carbon emissions reporting.
translated by 谷歌翻译
The last few years have seen a lot of work to address the challenge of low-latency and high-throughput convolutional neural network inference. Integrated photonics has the potential to dramatically accelerate neural networks because of its low-latency nature. Combined with the concept of Joint Transform Correlator (JTC), the computationally expensive convolution functions can be computed instantaneously (time of flight of light) with almost no cost. This 'free' convolution computation provides the theoretical basis of the proposed PhotoFourier JTC-based CNN accelerator. PhotoFourier addresses a myriad of challenges posed by on-chip photonic computing in the Fourier domain including 1D lenses and high-cost optoelectronic conversions. The proposed PhotoFourier accelerator achieves more than 28X better energy-delay product compared to state-of-art photonic neural network accelerators.
translated by 谷歌翻译
深神经网络(DNNS)在各种机器学习(ML)应用程序中取得了巨大成功,在计算机视觉,自然语言处理和虚拟现实等中提供了高质量的推理解决方案。但是,基于DNN的ML应用程序也带来计算和存储要求的增加了很多,对于具有有限的计算/存储资源,紧张的功率预算和较小形式的嵌入式系统而言,这尤其具有挑战性。挑战还来自各种特定应用的要求,包括实时响应,高通量性能和可靠的推理准确性。为了应对这些挑战,我们介绍了一系列有效的设计方法,包括有效的ML模型设计,定制的硬件加速器设计以及硬件/软件共同设计策略,以启用嵌入式系统上有效的ML应用程序。
translated by 谷歌翻译
本文探讨了超线性增长趋势的环境影响,从整体角度来看,跨越数据,算法和系统硬件。我们通过在行业规模机器学习用例中检查模型开发周期来表征AI计算的碳足迹,同时考虑系统硬件的生命周期。进一步迈出一步,我们捕获AI计算的操作和制造碳足迹,并为硬件 - 软件设计和尺度优化的结束分析以及如何帮助降低AI的整体碳足迹。根据行业经验和经验教训,我们分享关键挑战,并在AI的许多方面上绘制了重要的发展方向。我们希望本文提出的关键信息和见解能够激发社区以环保的方式推进AI领域。
translated by 谷歌翻译
基于惯性数据的人类活动识别(HAR)是从智能手机到超低功率传感器的嵌入式设备上越来越扩散的任务。由于深度学习模型的计算复杂性很高,因此大多数嵌入式HAR系统基于简单且不那么精确的经典机器学习算法。这项工作弥合了在设备上的HAR和深度学习之间的差距,提出了一组有效的一维卷积神经网络(CNN),可在通用微控制器(MCUS)上部署。我们的CNN获得了将超参数优化与子字节和混合精确量化的结合,以在分类结果和记忆职业之间找到良好的权衡。此外,我们还利用自适应推断作为正交优化,以根据处理后的输入来调整运行时的推理复杂性,从而产生更灵活的HAR系统。通过在四个数据集上进行实验,并针对超低功率RISC-V MCU,我们表明(i)我们能够为HAR获得一组丰富的帕累托(Pareto)最佳CNN,以范围超过1个数量级记忆,潜伏期和能耗; (ii)由于自适应推断,我们可以从单个CNN开始得出> 20个运行时操作模式,分类分数的不同程度高达10%,并且推理复杂性超过3倍,并且内存开销有限; (iii)在四个基准中的三个基准中,我们的表现都超过了所有以前的深度学习方法,将记忆占用率降低了100倍以上。获得更好性能(浅层和深度)的少数方法与MCU部署不兼容。 (iv)我们所有的CNN都与推理延迟<16ms的实时式evice Har兼容。他们的记忆职业在0.05-23.17 kb中有所不同,其能源消耗为0.005和61.59 UJ,可在较小的电池供应中进行多年的连续操作。
translated by 谷歌翻译
最近,使用卷积神经网络(CNNS)存在移动和嵌入式应用的爆炸性增长。为了减轻其过度的计算需求,开发人员传统上揭示了云卸载,突出了高基础设施成本以及对网络条件的强烈依赖。另一方面,强大的SOC的出现逐渐启用设备执行。尽管如此,低端和中层平台仍然努力充分运行最先进的CNN。在本文中,我们展示了Dyno,一种分布式推断框架,将两全其人的最佳框架结合起来解决了几个挑战,例如设备异质性,不同的带宽和多目标要求。启用这是其新的CNN特定数据包装方法,其在onloading计算时利用CNN的不同部分的精度需求的可变性以及其新颖的调度器,该调度器共同调谐分区点并在运行时传输数据精度适应其执行环境的推理。定量评估表明,Dyno优于当前最先进的,通过竞争对手的CNN卸载系统,在竞争对手的CNN卸载系统上提高吞吐量超过一个数量级,最高可达60倍的数据。
translated by 谷歌翻译
随着人工智能(AI)的积极发展,基于深神经网络(DNN)的智能应用会改变人们的生活方式和生产效率。但是,从网络边缘生成的大量计算和数据成为主要的瓶颈,传统的基于云的计算模式无法满足实时处理任务的要求。为了解决上述问题,通过将AI模型训练和推理功能嵌入网络边缘,Edge Intelligence(EI)成为AI领域的尖端方向。此外,云,边缘和终端设备之间的协作DNN推断提供了一种有希望的方法来增强EI。然而,目前,以EI为导向的协作DNN推断仍处于早期阶段,缺乏对现有研究工作的系统分类和讨论。因此,我们已经对有关以EI为导向的协作DNN推断的最新研究进行了全面调查。在本文中,我们首先回顾了EI的背景和动机。然后,我们为EI分类了四个典型的DNN推理范例,并分析其特征和关键技术。最后,我们总结了协作DNN推断的当前挑战,讨论未来的发展趋势并提供未来的研究方向。
translated by 谷歌翻译
关键字斑点(kWs)是一个重要的功能,使我们的周围环境中许多无处不在的智能设备进行交互,可以通过唤醒词或直接作为人机界面激活它们。对于许多应用程序,KWS是我们与设备交互的进入点,因此,始终是ON工作负载。许多智能设备都是移动的,并且它们的电池寿命受到持续运行的服务受到严重影响。因此,KWS和类似的始终如一的服务是在优化整体功耗时重点。这项工作解决了低成本微控制器单元(MCU)的KWS节能。我们将模拟二元特征提取与二元神经网络相结合。通过用拟议的模拟前端取代数字预处理,我们表明数据采集和预处理所需的能量可以减少29倍,将其份额从主导的85%的份额削减到仅为我们的整体能源消耗的16%参考KWS应用程序。语音命令数据集的实验评估显示,所提出的系统分别优于最先进的准确性和能效,在10级数据集中分别在10级数据集上达到1%和4.3倍,同时提供令人信服的精度 - 能源折衷包括71倍能量减少2%的精度下降。
translated by 谷歌翻译
利用稀疏性是加速在移动设备上的量化卷积神经网络(CNN)推断的关键技术。现有稀疏的CNN加速器主要利用无结构性稀疏性并实现显着的加速。然而,由于无界,很大程度上不可预测的稀疏模式,利用非结构化稀疏性需要复杂的硬件设计,具有显着的能量和面积开销,这对能量和区域效率至关重要的移动/ IOT推理场景特别有害。我们建议利用结构化的稀疏性,更具体地,更密集地绑定块(DBB)稀疏性,用于重量和激活。 DBB块张于每个块的最大非零数。因此,DBB暴露静态可预测的稀疏模式,使瘦稀疏性利用硬件能够。我们提出了新的硬件基元,以分别为(静态)权重和(动态)激活的DBB稀疏性,具有非常低的开销。建立在基元的顶部,我们描述了一种基于收缩阵列的CNN加速器的S2TA,可利用联合重量和激活DBB稀疏性和传统的收缩系统阵列上不可用的数据重用的新维度。与具有零值时钟门控的完全阵列的强基线相比,16NM中的S2TA达到超过2倍的加速和能量减少,超过五个流行的CNN基准。与近期的非收缩稀疏加速器相比,Eyeriss V2(65nm)和Sparten(45nm),S2TA在65nm中使用约2.2倍和3.1倍的每次推断的能量较少。
translated by 谷歌翻译
Video, as a key driver in the global explosion of digital information, can create tremendous benefits for human society. Governments and enterprises are deploying innumerable cameras for a variety of applications, e.g., law enforcement, emergency management, traffic control, and security surveillance, all facilitated by video analytics (VA). This trend is spurred by the rapid advancement of deep learning (DL), which enables more precise models for object classification, detection, and tracking. Meanwhile, with the proliferation of Internet-connected devices, massive amounts of data are generated daily, overwhelming the cloud. Edge computing, an emerging paradigm that moves workloads and services from the network core to the network edge, has been widely recognized as a promising solution. The resulting new intersection, edge video analytics (EVA), begins to attract widespread attention. Nevertheless, only a few loosely-related surveys exist on this topic. A dedicated venue for collecting and summarizing the latest advances of EVA is highly desired by the community. Besides, the basic concepts of EVA (e.g., definition, architectures, etc.) are ambiguous and neglected by these surveys due to the rapid development of this domain. A thorough clarification is needed to facilitate a consensus on these concepts. To fill in these gaps, we conduct a comprehensive survey of the recent efforts on EVA. In this paper, we first review the fundamentals of edge computing, followed by an overview of VA. The EVA system and its enabling techniques are discussed next. In addition, we introduce prevalent frameworks and datasets to aid future researchers in the development of EVA systems. Finally, we discuss existing challenges and foresee future research directions. We believe this survey will help readers comprehend the relationship between VA and edge computing, and spark new ideas on EVA.
translated by 谷歌翻译
神经网络(NNS)的重要性和复杂性正在增长。神经网络的性能(和能源效率)可以通过计算或内存资源约束。在内存阵列附近或内部放置计算的内存处理(PIM)范式是加速内存绑定的NNS的可行解决方案。但是,PIM体系结构的形式各不相同,其中不同的PIM方法导致不同的权衡。我们的目标是分析基于NN的性能和能源效率的基于DRAM的PIM架构。为此,我们分析了三个最先进的PIM架构:(1)UPMEM,将处理器和DRAM阵列集成到一个2D芯片中; (2)Mensa,是针对边缘设备量身定制的基于3D堆栈的PIM架构; (3)Simdram,它使用DRAM的模拟原理来执行位序列操作。我们的分析表明,PIM极大地受益于内存的NNS:(1)UPMEM在GPU需要内存过度按要求的通用矩阵 - 矢量乘数内核时提供23x高端GPU的性能; (2)Mensa在Google Edge TPU上提高了3.0倍和3.1倍的能源效率和吞吐量,用于24个Google Edge NN型号; (3)SIMDRAM在三个二进制NNS中以16.7倍/1.4倍的速度优于CPU/GPU。我们得出的结论是,由于固有的建筑设计选择,NN模型的理想PIM体系结构取决于模型的独特属性。
translated by 谷歌翻译
In recent years, the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks. Such challenges can be potentially overcome by integrating communication, computing, caching, and control (i4C) technologies. In this survey, we first give a snapshot of different aspects of the i4C, comprising background, motivation, leading technological enablers, potential applications, and use cases. Next, we describe different models of communication, computing, caching, and control (4C) to lay the foundation of the integration approach. We review current state-of-the-art research efforts related to the i4C, focusing on recent trends of both conventional and artificial intelligence (AI)-based integration approaches. We also highlight the need for intelligence in resources integration. Then, we discuss integration of sensing and communication (ISAC) and classify the integration approaches into various classes. Finally, we propose open challenges and present future research directions for beyond 5G networks, such as 6G.
translated by 谷歌翻译