Progress in machine learning (ML) comes with a cost to the environment, given that training ML models requires significant computational resources, energy and materials. In the present article, we aim to quantify the carbon footprint of BLOOM, a 176-billion parameter language model, across its life cycle. We estimate that BLOOM's final training emitted approximately 24.7 tonnes of~\carboneq~if we consider only the dynamic power consumption, and 50.5 tonnes if we account for all processes ranging from equipment manufacturing to energy-based operational consumption. We also study the energy requirements and carbon emissions of its deployment for inference via an API endpoint receiving user queries in real-time. We conclude with a discussion regarding the difficulty of precisely estimating the carbon footprint of ML models and future research directions that can contribute towards improving carbon emissions reporting.
translated by 谷歌翻译
通过提供前所未有的计算资源访问,云计算能够在机器学习等技术中快速增长,其计算需求产生了高能源成本和相应的碳足迹。结果,最近的奖学金呼吁更好地估计AI的温室气体影响:当今的数据科学家无法轻松或可靠地访问该信息的测量,从而排除了可行策略的发展。向用户提供有关软件碳强度的信息的云提供商是一种基本的垫脚石,以最大程度地减少排放。在本文中,我们提供了一个测量软件碳强度的框架,并建议通过使用每个能量单元使用基于位置和特定时间的边际排放数据来测量运行碳排放。我们为一组自然语言处理和计算机视觉的现代模型提供了操作软件强度的测量,以及各种模型尺寸,包括预处理61亿个参数语言模型。然后,我们评估了一套用于减少Microsoft Azure Cloud Compute平台排放的方法套件:使用不同地理区域中的云实例,在一天中的不同时间使用云实例,并在边际碳强度高于某个阈值时动态暂停云实例。我们证实了先前的结果,即数据中心的地理区域在给定云实例的碳强度中起着重要作用,并发现选择合适的区域可能具有最大的运营排放减少影响。我们还表明,一天中的时间对操作软件碳强度有显着影响。最后,我们最终提出了有关机器学习从业人员如何使用软件碳强度信息来减少环境影响的建议。
translated by 谷歌翻译
Accurate reporting of energy and carbon usage is essential for understanding the potential climate impacts of machine learning research. We introduce a framework that makes this easier by providing a simple interface for tracking realtime energy consumption and carbon emissions, as well as generating standardized online appendices. Utilizing this framework, we create a leaderboard for energy efficient reinforcement learning algorithms to incentivize responsible research in this area as an example for other areas of machine learning. Finally, based on case studies using our framework, we propose strategies for mitigation of carbon emissions and reduction of energy consumption. By making accounting easier, we hope to further the sustainable development of machine learning experiments and spur more research into energy efficient algorithms.
translated by 谷歌翻译
深度神经网络的规模和复杂性继续成倍增长,大大增加了这些模型训练和推断的能源消耗。我们介绍了一个开源软件包ECO2AI,以帮助数据科学家和研究人员以直接的方式跟踪其模型的能源消耗和同等的二氧化碳排放。在Eco2ai中,我们强调能源消耗跟踪和正确的区域二氧化碳排放会计的准确性。我们鼓励研究社区搜索具有较低计算成本的新最佳人工智能(AI)架构。动机还来自基于AI的温室气体与可持续AI和绿色AI途径隔离周期的概念。
translated by 谷歌翻译
本文探讨了超线性增长趋势的环境影响,从整体角度来看,跨越数据,算法和系统硬件。我们通过在行业规模机器学习用例中检查模型开发周期来表征AI计算的碳足迹,同时考虑系统硬件的生命周期。进一步迈出一步,我们捕获AI计算的操作和制造碳足迹,并为硬件 - 软件设计和尺度优化的结束分析以及如何帮助降低AI的整体碳足迹。根据行业经验和经验教训,我们分享关键挑战,并在AI的许多方面上绘制了重要的发展方向。我们希望本文提出的关键信息和见解能够激发社区以环保的方式推进AI领域。
translated by 谷歌翻译
自动化机器学习(Automl)努力自动配置机器学习算法及其组合的整体(软件)解决方案 - 机器学习管道 - 针对手头的学习任务(数据集)量身定制。在过去十年中,Automl已成为具有数百个贡献的热门研究课题。虽然Automl提供了许多前景,但也称它也是相当资源密集的,这是其主要批评的主要观点之一。高资源消耗的主要原因是许多方法依赖于许多ML管道的(昂贵)评估,同时寻找良好的候选者。由于使用许多数据集和方法进行了大规模实验,因此在Automl方法研究的背景下放大了这个问题,每个数据都是用几种重复来排除随机效应的几个重复的实验。本文阐述了最近的绿色AI的精神,是为了提高对问题的自动化研究人员的意识,并详细阐述可能的补救措施。为此,我们确定了四类行动,社区可能采取更加可持续的自动化计划,即接近设计,基准,研究激励和透明度。
translated by 谷歌翻译
With the rise of AI in recent years and the increase in complexity of the models, the growing demand in computational resources is starting to pose a significant challenge. The need for higher compute power is being met with increasingly more potent accelerators and the use of large compute clusters. However, the gain in prediction accuracy from large models trained on distributed and accelerated systems comes at the price of a substantial increase in energy demand, and researchers have started questioning the environmental friendliness of such AI methods at scale. Consequently, energy efficiency plays an important role for AI model developers and infrastructure operators alike. The energy consumption of AI workloads depends on the model implementation and the utilized hardware. Therefore, accurate measurements of the power draw of AI workflows on different types of compute nodes is key to algorithmic improvements and the design of future compute clusters and hardware. To this end, we present measurements of the energy consumption of two typical applications of deep learning models on different types of compute nodes. Our results indicate that 1. deriving energy consumption directly from runtime is not accurate, but the consumption of the compute node needs to be considered regarding its composition; 2. neglecting accelerator hardware on mixed nodes results in overproportional inefficiency regarding energy consumption; 3. energy consumption of model training and inference should be considered separately - while training on GPUs outperforms all other node types regarding both runtime and energy consumption, inference on CPU nodes can be comparably efficient. One advantage of our approach is that the information on energy consumption is available to all users of the supercomputer, enabling an easy transfer to other workloads alongside a raise in user-awareness of energy consumption.
translated by 谷歌翻译
由于不断增长的计算要求,深度学习(DL)的能源消耗和碳足迹的增加已成为引起人们关注的原因。在这项工作中,我们关注开发医学图像分析模型(MIA)的碳足迹,其中处理了高空间分辨率的体积图像。在这项研究中,我们介绍并比较了文献中四种工具的特征,以量化DL的碳足迹。使用这些工具之一,我们估计了医学图像分割管道的碳足迹。我们选择NNU-NET作为医疗图像分割管道的代理,并在三个常见数据集上进行实验。在我们的工作中,我们希望告知MIA产生的能源成本不断增加。我们讨论了削减环境影响的简单策略,以使模型选择和培训过程更加有效。
translated by 谷歌翻译
尽管结果令人印象深刻,但深度学习的技术还引起了经常在数据中心进行的培训程序引起的严重隐私和环境问题。作为回应,已经出现了集中培训的替代方案,例如联邦学习(FL)。也许出乎意料的是,FL开始在全球范围内部署,这些公司必须遵守源自倡导隐私保护的政府和社会团体的新法律要求和政策。 \ textit {但是,与FL有关的潜在环境影响仍然不清楚和未开发。本文提供了有关佛罗里达碳足迹的首次系统研究。然后,我们将FL的碳足迹与传统的集中学习进行了比较。我们的发现表明,根据配置,FL可以比集中的机器学习高达两个数量级。但是,在某些情况下,由于嵌入式设备的能源消耗减少,它可以与集中学习相提并论。我们使用FL进行了不同类型的数据集,设置和各种深度学习模型的广泛实验。最后,我们强调并将报告的结果与FL的未来挑战和趋势联系起来,以减少其环境影响,包括算法效率,硬件能力和更强的行业透明度。
translated by 谷歌翻译
能源基础架构的数字转换实现了机器学习模型通常支持的新的,数据驱动的应用程序。但是,在现代数据驱动管道中的域特定数据转换,预处理和管理尚待解决。在本文中,我们对能够支持设计功能管理解决方案的通用数据模型进行了首次研究,这些解决方案是开发基于ML的能源应用中最重要的组成部分。我们首先提出了一种针对能源应用的数据模型的分类法,请说明该模型如何支持功能的设计及其后续的专用功能商店的管理。使用短期预测数据集,我们展示了设计更丰富的数据模型和工程性能的功能的好处。最后,我们基准了三个互补功能管理解决方案,包括适合时间序列的开源功能商店。
translated by 谷歌翻译
边缘计算是加速机器学习算法支持移动设备的流行目标,而无需通信潜伏在云中处理它们。机器学习的边缘部署主要考虑传统问题,例如其安装的交换约束(尺寸,重量和功率)。但是,考虑到体现能量和碳的重要贡献,这种指标不足以考虑计算的环境影响。在本文中,我们探讨了用于推理和在线培训的卷积神经网络加速引擎的权衡。特别是,我们探讨了内存处理(PIM)方法,移动GPU加速器以及最近发布的FPGA的使用,并将它们与新颖的赛车记忆PIM进行比较。用赛车记忆PIM替换支持PIM的DDR3可以恢复其体现的能量,以至于1年。对于高活动比,与支持PIM的赛车记忆相比,移动GPU可以更可持续,但具有更高的体现能量可以克服。
translated by 谷歌翻译
我们通过将系统的任务性能以及系统开发和部署产生的时间和资源成本纳入整体框架来重新构架AI中的进度分析。这些成本包括:数据,专家知识,人类监督,软件资源,计算周期,硬件和网络设施以及(什么样的)时间。这些成本分配在系统的生命周期中,并可能对不同的开发人员和用户提出不同的需求。我们提出的多维性能和成本空间可以折叠成单个公用事业指标,该指标衡量了对不同利益相关者的系统价值。即使没有单个效用函数,AI的进步也可以通过它们是否扩展帕累托表面来评估。我们将这些类型的成本标记为被忽视的AI进度维度,并使用四个案例研究探索它们:Alpha*(GO,国际象棋和其他棋盘游戏),ALE(Atari Games),Imagenet(图像分类)和虚拟个人助理( Siri,Alexa,Cortana和Google Assistant)。 AI中的这种更广泛的进步模型将导致估计AI系统潜在的社会使用和影响的新颖方法,以及建立里程碑以实现未来的进步。
translated by 谷歌翻译
As of 2022, greenhouse gases (GHG) emissions reporting and auditing are not yet compulsory for all companies and methodologies of measurement and estimation are not unified. We propose a machine learning-based model to estimate scope 1 and scope 2 GHG emissions of companies not reporting them yet. Our model, specifically designed to be transparent and completely adapted to this use case, is able to estimate emissions for a large universe of companies. It shows good out-of-sample global performances as well as good out-of-sample granular performances when evaluating it by sectors, by countries or by revenues buckets. We also compare our results to those of other providers and find our estimates to be more accurate. Thanks to the proposed explainability tools using Shapley values, our model is fully interpretable, the user being able to understand which factors split explain the GHG emissions for each particular company.
translated by 谷歌翻译
丹尼德缩放结束和摩尔法的放缓使能量使用数据中心在不可持续的道路上。数据中心已经是全球电力使用的大部分,应用需求以快速缩放。我们认为,数据中心计算的碳强度的大幅减少可以通过以软件为中心的方法来实现:通过修改系统API,通过修改系统API来使应用程序开发人员可见的能量和碳,使其成为可能进行知情的贸易性能和碳排放之间,并通过提高应用程序编程水平,以便灵活地使用更节能的计算和存储方法。我们还为系统软件奠定了一个研究议程,以减少数据中心计算的碳足迹。
translated by 谷歌翻译
Video, as a key driver in the global explosion of digital information, can create tremendous benefits for human society. Governments and enterprises are deploying innumerable cameras for a variety of applications, e.g., law enforcement, emergency management, traffic control, and security surveillance, all facilitated by video analytics (VA). This trend is spurred by the rapid advancement of deep learning (DL), which enables more precise models for object classification, detection, and tracking. Meanwhile, with the proliferation of Internet-connected devices, massive amounts of data are generated daily, overwhelming the cloud. Edge computing, an emerging paradigm that moves workloads and services from the network core to the network edge, has been widely recognized as a promising solution. The resulting new intersection, edge video analytics (EVA), begins to attract widespread attention. Nevertheless, only a few loosely-related surveys exist on this topic. A dedicated venue for collecting and summarizing the latest advances of EVA is highly desired by the community. Besides, the basic concepts of EVA (e.g., definition, architectures, etc.) are ambiguous and neglected by these surveys due to the rapid development of this domain. A thorough clarification is needed to facilitate a consensus on these concepts. To fill in these gaps, we conduct a comprehensive survey of the recent efforts on EVA. In this paper, we first review the fundamentals of edge computing, followed by an overview of VA. The EVA system and its enabling techniques are discussed next. In addition, we introduce prevalent frameworks and datasets to aid future researchers in the development of EVA systems. Finally, we discuss existing challenges and foresee future research directions. We believe this survey will help readers comprehend the relationship between VA and edge computing, and spark new ideas on EVA.
translated by 谷歌翻译
Today's software is bloated leading to significant resource wastage. This bloat is prevalent across the entire software stack, from the operating system, all the way to software backends, frontends, and web-pages. In this paper, we study how prevalent bloat is in machine learning containers. We develop MMLB, a framework to analyze bloat in machine learning containers, measuring the amount of bloat that exists on the container and package levels. Our tool quantifies the sources of bloat and removes them. We integrate our tool with vulnerability analysis tools to measure how bloat affects container vulnerabilities. We experimentally study 15 machine learning containers from the official Tensorflow, Pytorch, and NVIDIA container registries under different tasks, (i.e., training, tuning, and serving). Our findings show that machine learning containers contain bloat encompassing up to 80\% of the container size. We find that debloating machine learning containers speeds provisioning times by up to $3.7\times$ and removes up to 98\% of all vulnerabilities detected by vulnerability analysis tools such as Grype. Finally, we relate our results to the larger discussion about technical debt in machine learning systems.
translated by 谷歌翻译
Recent progress in hardware and methodology for training neural networks has ushered in a new generation of large networks trained on abundant data. These models have obtained notable gains in accuracy across many NLP tasks. However, these accuracy improvements depend on the availability of exceptionally large computational resources that necessitate similarly substantial energy consumption. As a result these models are costly to train and develop, both financially, due to the cost of hardware and electricity or cloud compute time, and environmentally, due to the carbon footprint required to fuel modern tensor processing hardware. In this paper we bring this issue to the attention of NLP researchers by quantifying the approximate financial and environmental costs of training a variety of recently successful neural network models for NLP. Based on these findings, we propose actionable recommendations to reduce costs and improve equity in NLP research and practice.
translated by 谷歌翻译
作为行业4.0时代的一项新兴技术,数字双胞胎因其承诺进一步优化流程设计,质量控制,健康监测,决策和政策制定等,通过全面对物理世界进行建模,以进一步优化流程设计,质量控制,健康监测,决策和政策,因此获得了前所未有的关注。互连的数字模型。在一系列两部分的论文中,我们研究了不同建模技术,孪生启用技术以及数字双胞胎常用的不确定性量化和优化方法的基本作用。第二篇论文介绍了数字双胞胎的关键启示技术的文献综述,重点是不确定性量化,优化方法,开源数据集和工具,主要发现,挑战和未来方向。讨论的重点是当前的不确定性量化和优化方法,以及如何在数字双胞胎的不同维度中应用它们。此外,本文介绍了一个案例研究,其中构建和测试了电池数字双胞胎,以说明在这两部分评论中回顾的一些建模和孪生方法。 GITHUB上可以找到用于生成案例研究中所有结果和数字的代码和预处理数据。
translated by 谷歌翻译
Ongoing risks from climate change have impacted the livelihood of global nomadic communities, and are likely to lead to increased migratory movements in coming years. As a result, mobility considerations are becoming increasingly important in energy systems planning, particularly to achieve energy access in developing countries. Advanced Plug and Play control strategies have been recently developed with such a decentralized framework in mind, more easily allowing for the interconnection of nomadic communities, both to each other and to the main grid. In light of the above, the design and planning strategy of a mobile multi-energy supply system for a nomadic community is investigated in this work. Motivated by the scale and dimensionality of the associated uncertainties, impacting all major design and decision variables over the 30-year planning horizon, Deep Reinforcement Learning (DRL) is implemented for the design and planning problem tackled. DRL based solutions are benchmarked against several rigid baseline design options to compare expected performance under uncertainty. The results on a case study for ger communities in Mongolia suggest that mobile nomadic energy systems can be both technically and economically feasible, particularly when considering flexibility, although the degree of spatial dispersion among households is an important limiting factor. Key economic, sustainability and resilience indicators such as Cost, Equivalent Emissions and Total Unmet Load are measured, suggesting potential improvements compared to available baselines of up to 25%, 67% and 76%, respectively. Finally, the decomposition of values of flexibility and plug and play operation is presented using a variation of real options theory, with important implications for both nomadic communities and policymakers focused on enabling their energy access.
translated by 谷歌翻译
New architecture GPUs like A100 are now equipped with multi-instance GPU (MIG) technology, which allows the GPU to be partitioned into multiple small, isolated instances. This technology provides more flexibility for users to support both deep learning training and inference workloads, but efficiently utilizing it can still be challenging. The vision of this paper is to provide a more comprehensive and practical benchmark study for MIG in order to eliminate the need for tedious manual benchmarking and tuning efforts. To achieve this vision, the paper presents MIGPerf, an open-source tool that streamlines the benchmark study for MIG. Using MIGPerf, the authors conduct a series of experiments, including deep learning training and inference characterization on MIG, GPU sharing characterization, and framework compatibility with MIG. The results of these experiments provide new insights and guidance for users to effectively employ MIG, and lay the foundation for further research on the orchestration of hybrid training and inference workloads on MIGs. The code and results are released on https://github.com/MLSysOps/MIGProfiler. This work is still in progress and more results will be published soon.
translated by 谷歌翻译