超比计算(HDC)是由大脑启发的新出现的计算框架,其在数千个尺寸上运行以模拟认知的载体。与运行数量的传统计算框架不同,HDC,如大脑,使用高维随机向量并能够一次学习。 HDC基于明确定义的算术运算集,并且是高度误差的。 HDC的核心运营操纵高清vectors以散装比特方式,提供许多机会利用并行性。遗憾的是,在传统的von-neuman架构上,处理器中的高清矢量的连续运动可以使认知任务过度缓慢和能量密集。硬件加速器只会略微改进相关的指标。相反,只有使用新兴铭文设备内存的HDC框架的部分实施,已报告了相当大的性能/能源收益。本文介绍了一种基于赛道内存(RTM)的架构,以便在内存中进行和加速整个HDC框架。所提出的解决方案需要最小的附加CMOS电路,并在称为横向读取(TR)的RTM中跨多个域的读取操作,以实现排他性或(XOR)和添加操作。为了最小化CMOS电路的开销,我们提出了一种基于RTM纳米线的计数机制,其利用TR操作和标准RTM操作。使用语言识别作为用例,分别与FPGA设计相比,整体运行时和能耗降低了7.8倍和5.3倍。与最先进的内存实现相比,所提出的HDC系统将能耗降低8.6倍。
translated by 谷歌翻译
基于von-neumann架构的传统计算系统,数据密集型工作负载和应用程序(如机器学习)和应用程序都是基本上限制的。随着数据移动操作和能量消耗成为计算系统设计中的关键瓶颈,对近数据处理(NDP),机器学习和特别是神经网络(NN)的加速器等非传统方法的兴趣显着增加。诸如Reram和3D堆叠的新兴内存技术,这是有效地架构基于NN的基于NN的加速器,因为它们的工作能力是:高密度/低能量存储和近记忆计算/搜索引擎。在本文中,我们提出了一种为NN设计NDP架构的技术调查。通过基于所采用的内存技术对技术进行分类,我们强调了它们的相似之处和差异。最后,我们讨论了需要探索的开放挑战和未来的观点,以便改进和扩展未来计算平台的NDP架构。本文对计算机学习领域的计算机架构师,芯片设计师和研究人员来说是有价值的。
translated by 谷歌翻译
高维计算(HDC)是用于数据表示和学习的范式,起源于计算神经科学。HDC将数据表示为高维,低精度向量,可用于学习或召回等各种信息处理任务。高维空间的映射是HDC中的一个基本问题,现有方法在输入数据本身是高维时会遇到可伸缩性问题。在这项工作中,我们探索了一个基于哈希的流媒体编码技术。我们正式表明,这些方法在学习应用程序的性能方面具有可比的保证,同时比现有替代方案更有效。我们在一个流行的高维分类问题上对这些结果进行了实验验证,并表明我们的方法很容易扩展到非常大的数据集。
translated by 谷歌翻译
作为其核心计算,一种自我发挥的机制可以在整个输入序列上分配成对相关性。尽管表现良好,但计算成对相关性的成本高昂。尽管最近的工作表明了注意力分数低的元素的运行时间修剪的好处,但自我发挥机制的二次复杂性及其芯片内存能力的需求被忽略了。这项工作通过构建一个称为Sprint的加速器来解决这些约束,该加速器利用RERAM横杆阵列的固有并行性以近似方式计算注意力分数。我们的设计使用RERAM内的轻质模拟阈值电路来降低注意力评分,从而使Sprint只能获取一小部分相关数据到芯片内存。为了减轻模型准确性的潜在负面影响,Sprint重新计算数字中少数获取数据的注意力评分。相关注意分数的组合内修剪和片上重新计算可以将Sprint转化为仅线性的二次复杂性。此外,我们即使修剪后,我们也可以识别并利用相邻的注意操作之间的动态空间位置,从而消除了昂贵但冗余的数据获取。我们在各种最新的变压器模型上评估了我们提出的技术。平均而言,当使用总16KB芯片内存时,Sprint会产生7.5倍的速度和19.6倍的能量,而实际上与基线模型的等值级相当(平均为0.36%的降级)。
translated by 谷歌翻译
在小型电池约束的物流设备上部署现代TinyML任务需要高计算能效。使用非易失性存储器(NVM)的模拟内存计算(IMC)承诺在深神经网络(DNN)推理中的主要效率提高,并用作DNN权重的片上存储器存储器。然而,在系统级别尚未完全理解IMC的功能灵活性限制及其对性能,能量和面积效率的影响。为了目标实际的端到端的IOT应用程序,IMC阵列必须括在异构可编程系统中,引入我们旨在解决这项工作的新系统级挑战。我们介绍了一个非均相紧密的聚类架构,整合了8个RISC-V核心,内存计算加速器(IMA)和数字加速器。我们在高度异构的工作负载上基准测试,例如来自MobileNetv2的瓶颈层,显示出11.5倍的性能和9.5倍的能效改进,而在核心上高度优化并行执行相比。此外,我们通过将我们的异构架构缩放到多阵列加速器,探讨了在IMC阵列资源方面对全移动级DNN(MobileNetv2)的端到端推断的要求。我们的结果表明,我们的解决方案在MobileNetv2的端到端推断上,在执行延迟方面比现有的可编程架构更好,比最先进的异构解决方案更好的数量级集成内存计算模拟核心。
translated by 谷歌翻译
Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without sacrificing application accuracy or increasing hardware cost are critical to the wide deployment of DNNs in AI systems.This article aims to provide a comprehensive tutorial and survey about the recent advances towards the goal of enabling efficient processing of DNNs. Specifically, it will provide an overview of DNNs, discuss various hardware platforms and architectures that support DNNs, and highlight key trends in reducing the computation cost of DNNs either solely via hardware design changes or via joint hardware design and DNN algorithm changes. It will also summarize various development resources that enable researchers and practitioners to quickly get started in this field, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of DNN hardware designs, optionally including algorithmic co-designs, being proposed in academia and industry.The reader will take away the following concepts from this article: understand the key design considerations for DNNs; be able to evaluate different DNN hardware implementations with benchmarks and comparison metrics; understand the trade-offs between various hardware architectures and platforms; be able to evaluate the utility of various DNN design techniques for efficient processing; and understand recent implementation trends and opportunities.
translated by 谷歌翻译
最新的努力改善了满足当今应用程序要求的神经网络(NN)加速器的性能,这引起了基于逻辑NN推理的新趋势,该趋势依赖于固定功能组合逻辑。将如此大的布尔函数与许多输入变量和产品项绘制到现场可编程门阵列(FPGA)上的数字信号处理器(DSP)需要一个新颖的框架,考虑到此过程中DSP块的结构和可重构性。本文中提出的方法将固定功能组合逻辑块映射到一组布尔功能,其中与每个功能相对应的布尔操作映射到DSP设备,而不是FPGA上的查找表(LUTS),以利用高性能,DSP块的低潜伏期和并行性。 %本文还提出了一种用于NNS编译和映射的创新设计和优化方法,并利用固定功能组合逻辑与DSP进行了使用高级合成流的FPGA上的DSP。 %我们在几个\ revone {DataSets}上进行的实验评估和选定的NNS与使用DSP的基于ART FPGA的NN加速器相比,根据推理潜伏期和输出准确性,证明了我们框架的可比性。
translated by 谷歌翻译
卷积神经网络(CNN)在各种应用中表现出卓越的性能,但具有较高的计算复杂性。量化用于降低CNN的延迟和存储成本。在量化方法中,二进制重量网络(BWN和TWNS)在8位和4位量化方面具有独特的优势。他们用加法替代CNN中的乘法操作,这些操作在内存计数(IMC)设备上受到青睐。 BWNS的IMC加速度已被广泛研究。但是,尽管TWN的精度比BWN具有更高的准确性和更好的稀疏性,但IMC的加速度的研究有限。现有的IMC设备上的TWN效率低下,因为稀疏性无法很好地利用,并且加法操作效率不高。在本文中,我们建议FAT作为TWN的新型IMC加速器。首先,我们提出了一个稀疏的加法控制单元,该单元利用TWN的稀疏度跳过了零重量的无效操作。其次,我们提出了一个基于内存感知器的快速添加方案,以避免携带传播的时间开销并将其写回记忆单元。第三,我们进一步提出了一个组合的数据映射,以减少激活和权重的数据移动,并增加跨内存列的并行性。仿真结果表明,与最先进的IMC加速器Parapim相比,对于感官放大器水平上的加法操作,FAT达到2.00倍加速度,1.22倍功率效率和1.22倍面积效率。与帕拉皮姆(Parapim)相比,脂肪达到10.02倍的加速度和12.19倍的能量效率,而平均稀疏性为80%的网络。
translated by 谷歌翻译
我们提出了一个新颖的框架,用于设计无乘数内核机器,该机器可以在智能边缘设备等资源约束平台上使用。该框架使用基于边缘传播(MP)技术的分段线性(PWL)近似值,仅使用加法/减法,移位,比较和寄存器底流/溢出操作。我们建议使用针对现场可编程门阵列(FPGA)平台进行优化的基于硬件的MP推理和在线培训算法。我们的FPGA实施消除了对DSP单元的需求,并减少了LUT的数量。通过重复使用相同的硬件进行推理和培训,我们表明该平台可以克服由MP近似产生的分类错误和本地最小值。该提议的无乘数MP-Kernel机器在FPGA上的实施导致估计的能源消耗为13.4 PJ,功率消耗为107 MW,每台均具有〜9K LUTS和FFS,每张均具有256 x 32个大小的核与其他可比实现相比,区域和区域。
translated by 谷歌翻译
传染媒介符号架构将高维传染料空间与一组精心设计的操作员组合起来,以便使用大型数字向量进行符号计算。主要目标是利用他们的代表权力和处理模糊和歧义的能力。在过去几年中,已经提出了几个VSA实现。可用的实现在底层矢量空间和VSA运算符的特定实现中不同。本文概述了十一可用的VSA实现,并讨论了其潜在的矢量空间和运营商的共性和差异。我们创建了一种可用绑定操作的分类,并使用来自类比推理的示例来显示非自逆绑定操作的重要分支。主要贡献是可用实施的实验比较,以便评估(1)捆绑的容量,(2)非精确解除界操作的近似质量,(3)组合绑定和捆绑操作对查询的影响回答性能,(4)两个示例应用程序的性能:视觉地位和语言识别。我们预计此比较和系统化与VSA的开发相关,并支持选择特定任务的适当VSA。实现可用。
translated by 谷歌翻译
当今的大多数计算机视觉管道都是围绕深神经网络构建的,卷积操作需要大部分一般的计算工作。与标准算法相比,Winograd卷积算法以更少的MAC计算卷积,当使用具有2x2尺寸瓷砖$ F_2 $的版本时,3x3卷积的操作计数为2.25倍。即使收益很大,Winograd算法具有较大的瓷砖尺寸,即$ f_4 $,在提高吞吐量和能源效率方面具有更大的潜力,因为它将所需的MAC降低了4倍。不幸的是,具有较大瓷砖尺寸的Winograd算法引入了数值问题,这些问题阻止了其在整数域特异性加速器上的使用和更高的计算开销,以在空间和Winograd域之间转换输入和输出数据。为了解锁Winograd $ F_4 $的全部潜力,我们提出了一种新颖的Tap-Wise量化方法,该方法克服了使用较大瓷砖的数值问题,从而实现了仅整数的推断。此外,我们介绍了以功率和区域效率的方式处理Winograd转换的自定义硬件单元,并展示了如何将此类自定义模块集成到工业级,可编程的DSA中。对大量最先进的计算机视觉基准进行了广泛的实验评估表明,Tap-Wise量化算法使量化的Winograd $ F_4 $网络几乎与FP32基线一样准确。 Winograd增强的DSA可实现高达1.85倍的能源效率,最高可用于最先进的细分和检测网络的端到端速度高达1.83倍。
translated by 谷歌翻译
变形金刚是一种深入学习语言模型,用于数据中心中的自然语言处理(NLP)服务。在变压器模型中,生成的预训练的变压器(GPT)在文本生成或自然语言生成(NLG)中取得了显着的性能,它需要在摘要阶段处理大型输入上下文,然后是产生一个生成阶段的一次单词。常规平台(例如GPU)专门用于在摘要阶段平行处理大型输入,但是由于其顺序特征,它们的性能在生成阶段显着降低。因此,需要一个有效的硬件平台来解决由文本生成的顺序特征引起的高潜伏期。在本文中,我们提出了DFX,这是一种多FPGA加速器,该设备在摘要和发电阶段中执行GPT-2模型端到端,并具有低延迟和高吞吐量。 DFX使用模型并行性和优化的数据流,这是模型和硬件感知的设备之间快速同时执行执行。其计算核心根据自定义说明运行,并提供GPT-2操作端到端。我们在四个Xilinx Alveo U280 FPGAS上实现了建议的硬件体系结构,并利用了高带宽内存(HBM)的所有频道,以及用于高硬件效率的最大计算资源数量。 DFX在现代GPT-2模型上实现了四个NVIDIA V100 GPU的5.58倍加速度和3.99倍的能效。 DFX的成本效益比GPU设备更具成本效益,这表明它是云数据中心中文本生成工作负载的有前途解决方案。
translated by 谷歌翻译
本文以生物学启发的神经形态硬件进行了最新创新,本文介绍了一种新颖的无监督机器学习算法,名为Hyperseed,该算法借鉴了矢量符号体系结构(VSA)的原理,用于快速学习保存未标记数据的拓扑图。它依靠VSA的两个主要操作,具有约束力和捆绑。 Hyperseed的算法部分在傅立叶全息降低表示模型中表达,该模型特别适合于尖峰神经形态硬件实现。 Hyperseed算法的两个主要贡献是很少的学习和基于单个向量操作的学习规则。这些属性在合成数据集以及说明性基准用例,IRIS分类以及使用N-Gram统计信息的语言标识任务上进行了经验评估。这些实验的结果证实了Hyperseed及其在神经形态硬件中的应用。
translated by 谷歌翻译
深度神经网络(DNN)在各个领域的有效性(例如分类问题,图像处理,视频细分和语音识别)已被证明。加速器内存(AIM)架构是有效加速DNN的有前途解决方案,因为它们可以避免传统的von Neumann架构的内存瓶颈。由于主要内存通常在许多系统中是DRAM,因此在DRAM中高度平行的多重含用(MAC)阵列可以通过减少处理器和主内存之间的数据运动的距离和数量来最大化目标的好处。本文介绍了一个名为MAC-DO的基于模拟MAC阵列的AIM架构。与以前的IN-DRAM加速器相反,MAC-DO使整个DRAM阵列同时参与MAC计算,而无需闲置细胞,从而导致更高的吞吐量和能量效率。通过利用基于电荷转向的新的模拟计算方法来实现这种改进。此外,Mac-Do天生支持具有良好线性的多位Mac。 MAC-DO仍然与当前的1T1C DRAM技术兼容,而没有任何DRAM单元格和数组的修改。 MAC-DO数组可以基于输出固定映射加速矩阵乘法,因此支持DNN中执行的大多数计算。我们使用晶体管级仿真的评估表明,具有16 x 16 Mac-Do细胞的测试MAC-DO阵列可达到188.7 TOPS/W,并显示了MNIST数据集的97.07%TOP-1准确性,而无需重新培训。
translated by 谷歌翻译
编译器框架对于广泛使用基于FPGA的深度学习加速器来说是至关重要的。它们允许研究人员和开发人员不熟悉硬件工程,以利用域特定逻辑所获得的性能。存在传统人工神经网络的各种框架。然而,没有多大的研究努力已经进入创建针对尖刺神经网络(SNNS)进行优化的框架。这种新一代的神经网络对于在边缘设备上部署AI的越来越有趣,其具有紧密的功率和资源约束。我们的端到端框架E3NE为FPGA自动生成高效的SNN推理逻辑。基于Pytorch模型和用户参数,它应用各种优化,并评估基于峰值的加速器固有的权衡。多个水平的并行性和新出现的神经编码方案的使用导致优于先前的SNN硬件实现的效率。对于类似的型号,E3NE使用的硬件资源的少于50%,功率较低20%,同时通过幅度降低延迟。此外,可扩展性和通用性允许部署大规模的SNN模型AlexNet和VGG。
translated by 谷歌翻译
近年来,已经提出了许多加速器来有效处理稀疏张量代数应用(例如稀疏的神经网络)。但是,这些建议是大而多样化的设计空间中的单个点。缺乏对这些稀疏张量加速器的系统描述和建模支持阻碍了硬件设计人员无法高效,有效的设计空间探索。本文首先提出了统一的分类法,以系统地描述各种稀疏张量加速器的设计空间。基于提议的分类法,它引入了Sparseloop,这是第一个快速,准确,灵活的分析建模框架,以实现稀疏张量加速器的早期评估和探索。 Sparseloop理解了一系列体系结构规格,包括各种数据流和稀疏加速功能(例如,消除基于零的计算)。使用这些规格,Sparseloop评估了设计的加工速度和能源效率,同时考虑了使用的数据流以及使用随机张量密度模型的稀疏加速度功能引入的数据移动和计算。在代表性的加速器和工作负载中,Sparseloop的建模速度比周期级模拟快2000倍,保持相对性能趋势,并达到0.1%至8%的平均误差。通过案例研究,我们证明了Sparseloop有助于揭示设计稀疏张量加速器的重要见解的能力(例如,共同设计正交设计方面很重要)。
translated by 谷歌翻译
神经网络(NNS)的重要性和复杂性正在增长。神经网络的性能(和能源效率)可以通过计算或内存资源约束。在内存阵列附近或内部放置计算的内存处理(PIM)范式是加速内存绑定的NNS的可行解决方案。但是,PIM体系结构的形式各不相同,其中不同的PIM方法导致不同的权衡。我们的目标是分析基于NN的性能和能源效率的基于DRAM的PIM架构。为此,我们分析了三个最先进的PIM架构:(1)UPMEM,将处理器和DRAM阵列集成到一个2D芯片中; (2)Mensa,是针对边缘设备量身定制的基于3D堆栈的PIM架构; (3)Simdram,它使用DRAM的模拟原理来执行位序列操作。我们的分析表明,PIM极大地受益于内存的NNS:(1)UPMEM在GPU需要内存过度按要求的通用矩阵 - 矢量乘数内核时提供23x高端GPU的性能; (2)Mensa在Google Edge TPU上提高了3.0倍和3.1倍的能源效率和吞吐量,用于24个Google Edge NN型号; (3)SIMDRAM在三个二进制NNS中以16.7倍/1.4倍的速度优于CPU/GPU。我们得出的结论是,由于固有的建筑设计选择,NN模型的理想PIM体系结构取决于模型的独特属性。
translated by 谷歌翻译
原则上,稀疏的神经网络应该比传统的密集网络更有效。大脑中的神经元表现出两种类型的稀疏性;它们稀疏地相互连接和稀疏活跃。当组合时,这两种类型的稀疏性,称为重量稀疏性和激活稀疏性,提出了通过两个数量级来降低神经网络的计算成本。尽管存在这种潜力,但今天的神经网络只使用重量稀疏提供适度的性能益处,因为传统的计算硬件无法有效地处理稀疏网络。在本文中,我们引入了互补稀疏性,这是一种显着提高现有硬件对双稀疏网络性能的新技术。我们证明我们可以实现高性能运行的重量稀疏网络,我们可以通过结合激活稀疏性来乘以这些加速。采用互补稀疏性,我们显示出对FPGA的推断的吞吐量和能效提高了100倍。我们分析了典型的商业卷积网络等各种内核的可扩展性和资源权衡,例如Resnet-50和MobileNetv2。我们的互补稀疏性的结果表明,重量加激活稀疏性可以是有效的缩放未来AI模型的有效组合。
translated by 谷歌翻译
稀疏卷积神经网络(CNNS)在过去几年中获得了显着的牵引力,因为与其致密的对应物相比,稀疏的CNNS可以大大降低模型尺寸和计算。稀疏的CNN经常引入层形状和尺寸的变化,这可以防止密集的加速器在稀疏的CNN模型上执行良好。最近提出的稀疏加速器,如SCNN,Eyeriss V2和Sparten,积极利用双面或全稀稀物质,即重量和激活的稀疏性,用于性能收益。然而,这些加速器具有低效的微架构,其限制了它们的性能,而不对非单位步幅卷积和完全连接(Fc)层的支持,或者遭受系统负荷不平衡的大规模遭受。为了规避这些问题并支持稀疏和密集的模型,我们提出了幻影,多线程,动态和灵活的神经计算核心。 Phantom使用稀疏二进制掩码表示,以主动寻求稀疏计算,并动态调度其计算线程以最大化线程利用率和吞吐量。我们还生成了幻象神经计算核心的二维(2D)网格体系结构,我们将其称为Phantom-2D加速器,并提出了一种支持CNN的所有层的新型数据流,包括单位和非单位步幅卷积,和fc层。此外,Phantom-2D使用双级负载平衡策略来最小化计算空闲,从而进一步提高硬件利用率。为了向不同类型的图层显示支持,我们评估VGG16和MobileNet上的幻影架构的性能。我们的模拟表明,Phantom-2D加速器分别达到了12倍,4.1 X,1.98x和2.36倍,超密架构,SCNN,Sparten和Eyeriss V2的性能增益。
translated by 谷歌翻译
我们日常生活中的深度学习是普遍存在的,包括自驾车,虚拟助理,社交网络服务,医疗服务,面部识别等,但是深度神经网络在训练和推理期间需要大量计算资源。该机器学习界主要集中在模型级优化(如深度学习模型的架构压缩),而系统社区则专注于实施级别优化。在其间,在算术界中提出了各种算术级优化技术。本文在模型,算术和实施级技术方面提供了关于资源有效的深度学习技术的调查,并确定了三种不同级别技术的资源有效的深度学习技术的研究差距。我们的调查基于我们的资源效率度量定义,阐明了较低级别技术的影响,并探讨了资源有效的深度学习研究的未来趋势。
translated by 谷歌翻译