图像去噪是许多领域下游任务的先决条件。低剂量和光子计数计算断层扫描(CT)去噪可以在最小化辐射剂量下优化诊断性能。监督深层去噪方法是流行的,但需要成对的清洁或嘈杂的样本通常在实践中不可用。受独立噪声假设的限制,电流无监督的去噪方法不能处理与CT图像中的相关噪声。在这里,我们提出了一种基于类似的类似性的无人监督的无监督的深度去噪方法,称为Coxing2Sim,以非局部和非线性方式起作用,不仅抑制独立而且还具有相关的噪音。从理论上讲,噪声2SIM在温和条件下渐近相当于监督学习方法。通过实验,Nosie2SIM从嘈杂的低剂量CT和光子计数CT图像中的内在特征,从视觉上,定量和统计上有效地或甚至优于实际数据集的监督学习方法。 Coke2Sim是一般无监督的去噪方法,在不同的应用中具有很大的潜力。
translated by 谷歌翻译
We propose a deep learning method for three-dimensional reconstruction in low-dose helical cone-beam computed tomography. We reconstruct the volume directly, i.e., not from 2D slices, guaranteeing consistency along all axes. In a crucial step beyond prior work, we train our model in a self-supervised manner in the projection domain using noisy 2D projection data, without relying on 3D reference data or the output of a reference reconstruction method. This means the fidelity of our results is not limited by the quality and availability of such data. We evaluate our method on real helical cone-beam projections and simulated phantoms. Our reconstructions are sharper and less noisy than those of previous methods, and several decibels better in quantitative PSNR measurements. When applied to full-dose data, our method produces high-quality results orders of magnitude faster than iterative techniques.
translated by 谷歌翻译
缺乏大规模嘈杂的图像对限制了监督的去噪方法在实际应用中部署。虽然现有无监督的方法能够在没有地面真理清洁图像的情况下学习图像去噪,但它们要么在不切实际的设置下表现出差或工作不佳(例如,配对嘈杂的图像)。在本文中,我们提出了一种实用的无监督图像去噪方法,以实现最先进的去噪性能。我们的方法只需要单一嘈杂的图像和噪声模型,可以在实际的原始图像去噪中轻松访问。它迭代地执行两个步骤:(1)构造具有来自噪声模型的随机噪声的噪声噪声数据集; (2)在噪声 - 嘈杂数据集上培训模型,并使用经过培训的模型来优化嘈杂的图像以获得下一轮中使用的目标。我们进一步近似我们的全迭代方法,具有快速算法,以实现更高效的培训,同时保持其原始高性能。实验对现实世界,合成和相关噪声的实验表明,我们提出的无监督的去噪方法具有卓越的现有无监督方法和具有监督方法的竞争性能。此外,我们认为现有的去噪数据集质量低,只包含少数场景。为了评估现实世界应用中的原始图像去噪表现,我们建立了一个高质量的原始图像数据集Sensenoise-500,包含500个现实生活场景。数据集可以作为更好地评估原始图像去噪的强基准。代码和数据集将在https://github.com/zhangyi-3/idr发布
translated by 谷歌翻译
基于深度学习的解决方案正在为各种应用程序成功实施。最值得注意的是,临床用例已增加了兴趣,并且是过去几年提出的一些尖端数据驱动算法背后的主要驱动力。对于诸如稀疏视图重建等应用,其中测量数据的量很少,以使获取时间短而且辐射剂量较低,降低了串联的伪像,促使数据驱动的DeNoINEDENO算法的开发,其主要目标是获得获得的主要目标。只有一个全扫描数据的子集诊断可行的图像。我们提出了WNET,这是一个数据驱动的双域denoising模型,其中包含用于稀疏视图deNoising的可训练的重建层。两个编码器 - 模型网络同时在正式和重建域中执行deno,而实现过滤后的反向投影算法的第三层则夹在前两种之间,并照顾重建操作。我们研究了该网络在稀疏视图胸部CT扫描上的性能,并突出显示了比更传统的固定层具有可训练的重建层的额外好处。我们在两个临床相关的数据集上训练和测试我们的网络,并将获得的结果与三种不同类型的稀疏视图CT CT DeNoisis和重建算法进行了比较。
translated by 谷歌翻译
通过最近基于深度学习的方法显示出令人鼓舞的结果,可以消除图像中的噪音,在有监督的学习设置中报道了最佳的降级性能,该设置需要大量的配对嘈杂图像和训练的基础真相。强大的数据需求可以通过无监督的学习技术来减轻,但是,对于高质量的解决方案,图像或噪声方差的准确建模仍然至关重要。对于未知的噪声分布而言,学习问题不足。本文研究了单个联合学习框架中图像降解和噪声方差估计的任务。为了解决问题的不良性,我们提出了深度差异先验(DVP),该差异指出,适当学到的DeNoiser在噪声变化方面的变化满足了一些平滑度的特性,这是良好DeNoiser的关键标准。建立在DVP的基础上,这是一个无监督的深度学习框架,同时学习了Denoiser并估算了噪声差异。我们的方法不需要任何干净的训练图像或噪声估计的外部步骤,而是仅使用一组嘈杂的图像近似于最小平方误差Denoisiser。在一个框架中考虑了两个基本任务,我们允许它们相互优化。实验结果表明,具有与监督的学习和准确的噪声方差估计值相当的质量。
translated by 谷歌翻译
减少全身CT扫描中患者的辐射暴露引起了医学成像界的广泛关注。鉴于低辐射剂量可能导致噪声和伪像增加,这极大地影响了临床诊断。为了获得高质量的全身低剂量CT(LDCT)图像,以前的基于深度学习的研究工作引入了各种网络架构。然而,大多数这些方法只采用正常剂量CT(NDCT)图像作为地面真理来指导去噪网络的训练。这种简单的限制导致模型效率更低,并使重建的图像遭受过平滑的效果。在本文中,我们提出了一种新的任务内知识转移方法,利用来自NDCT图像的蒸馏知识来帮助LDCT图像上的培训过程。派生架构被称为师生一致性网络(TSC-Net),由教师网络和具有相同架构的学生网络组成。通过中间功能之间的监督,鼓励学生网络模仿教师网络并获得丰富的纹理细节。此外,为了进一步利用CT扫描中包含的信息,介绍了在对比学习时建立的对比正规化机制(CRM).CRM执行将恢复的CT图像拉到NDCT样本,并将远离LDCT样本的遥控器中的遥远空间。此外,基于注意力和可变形卷积机制,我们设计了一种动态增强模块(DEM)以提高网络变换能力。
translated by 谷歌翻译
作为混合成像技术,光声显微镜(PAM)成像由于激光强度的最大允许暴露,组织中超声波的衰减以及换能器的固有噪声而受到噪声。去噪是降低噪声的后处理方法,并且可以恢复PAM图像质量。然而,之前的去噪技术通常严重依赖于数学前导者以及手动选择的参数,导致对不同噪声图像的不令人满意和慢的去噪能,这极大地阻碍了实用和临床应用。在这项工作中,我们提出了一种基于深度学习的方法,可以从PAM图像中除去复杂的噪声,没有数学前导者,并手动选择不同输入图像的设置。注意增强的生成对抗性网络用于提取图像特征并去除各种噪声。在合成和实际数据集上证明了所提出的方法,包括幻影(叶静脉)和体内(小鼠耳血管和斑马鱼颜料)实验。结果表明,与先前的PAM去噪方法相比,我们的方法在定性和定量上恢复图像时表现出良好的性能。此外,为256次\ times256 $像素的图像实现了0.016 s的去噪速度。我们的方法对于PAM图像的去噪有效和实用。
translated by 谷歌翻译
受监管的基于学习的方法屈服于强大的去噪结果,但它们本质上受到大规模清洁/嘈杂配对数据集的需要。另一方面,使用无监督的脱言机需要更详细地了解潜在的图像统计数据。特别是,众所周知,在高频频带上,清洁和嘈杂的图像之间的表观差异是最突出的,证明使用低通滤波器作为传统图像预处理步骤的一部分。然而,基于大多数基于学习的去噪方法在不考虑频域信息的情况下仅利用来自空间域的片面信息。为了解决这一限制,在本研究中,我们提出了一种频率敏感的无监督去噪方法。为此,使用生成的对抗性网络(GaN)作为基础结构。随后,我们包括光谱鉴别器和频率重建损失,以将频率知识传输到发电机中。使用自然和合成数据集的结果表明,我们无监督的学习方法增强了频率信息,实现了最先进的去噪能力,表明频域信息可能是提高无监督基于学习的方法的整体性能的可行因素。
translated by 谷歌翻译
磁共振图像的降解有益于提高低信噪比图像的质量。最近,使用深层神经网络进行DENOSING表现出了令人鼓舞的结果。但是,这些网络大多数都利用监督学习,这需要大量的噪声和清洁图像对的培训图像。获得训练图像,尤其是干净的图像,既昂贵又耗时。因此,已经开发了仅需要成对噪声浪费图像的噪声2Noise(N2N)之类的方法来减轻获得训练数据集的负担。在这项研究中,我们提出了一种新的自我监督的denoising方法Coil2Coil(C2C),该方法不需要获取干净的图像或配对的噪声浪费图像进行训练。取而代之的是,该方法利用了从分阶段阵列线圈中的多通道数据来生成训练图像。首先,它将多通道线圈图像分为两个图像,一个用于输入,另一个用于标签。然后,它们被处理以施加噪声独立性和敏感性归一化,以便它们可用于N2N的训练图像。为了推断,该方法输入了一个线圈组合的图像(例如DICOM图像),从而允许该方法的广泛应用。当使用合成噪声添加的图像进行评估时,C2C对几种自我监督方法显示了最佳性能,从而报告了与监督方法的可比结果。在测试DICOM图像时,C2C成功地将真实噪声降低,而没有显示误差图中的结构依赖性残差。由于不需要对清洁或配对图像进行额外扫描的显着优势,因此可以轻松地用于各种临床应用。
translated by 谷歌翻译
Self-supervised image denoising techniques emerged as convenient methods that allow training denoising models without requiring ground-truth noise-free data. Existing methods usually optimize loss metrics that are calculated from multiple noisy realizations of similar images, e.g., from neighboring tomographic slices. However, those approaches fail to utilize the multiple contrasts that are routinely acquired in medical imaging modalities like MRI or dual-energy CT. In this work, we propose the new self-supervised training scheme Noise2Contrast that combines information from multiple measured image contrasts to train a denoising model. We stack denoising with domain-transfer operators to utilize the independent noise realizations of different image contrasts to derive a self-supervised loss. The trained denoising operator achieves convincing quantitative and qualitative results, outperforming state-of-the-art self-supervised methods by 4.7-11.0%/4.8-7.3% (PSNR/SSIM) on brain MRI data and by 43.6-50.5%/57.1-77.1% (PSNR/SSIM) on dual-energy CT X-ray microscopy data with respect to the noisy baseline. Our experiments on different real measured data sets indicate that Noise2Contrast training generalizes to other multi-contrast imaging modalities.
translated by 谷歌翻译
Deconvolution is a widely used strategy to mitigate the blurring and noisy degradation of hyperspectral images~(HSI) generated by the acquisition devices. This issue is usually addressed by solving an ill-posed inverse problem. While investigating proper image priors can enhance the deconvolution performance, it is not trivial to handcraft a powerful regularizer and to set the regularization parameters. To address these issues, in this paper we introduce a tuning-free Plug-and-Play (PnP) algorithm for HSI deconvolution. Specifically, we use the alternating direction method of multipliers (ADMM) to decompose the optimization problem into two iterative sub-problems. A flexible blind 3D denoising network (B3DDN) is designed to learn deep priors and to solve the denoising sub-problem with different noise levels. A measure of 3D residual whiteness is then investigated to adjust the penalty parameters when solving the quadratic sub-problems, as well as a stopping criterion. Experimental results on both simulated and real-world data with ground-truth demonstrate the superiority of the proposed method.
translated by 谷歌翻译
扩散加权图像(DWIS)中的噪声降低了扩散张量磁共振成像(DTI)导出的微结构参数的准确性和精度,并导致延长的采集时间来实现改进的信噪比(SNR)。基于深度学习的图像去噪使用卷积神经网络(CNNS)具有卓越的性能,但通常需要额外的高SNR数据来监督CNN的培训,这降低了实际可行性。我们开发了一个自我监督的深度学习的方法,标题为“SDNDTI”,用于去噪DTI数据,这不需要额外的高SNR数据进行培训。具体地,SDNDTI将多向DTI数据划分为许多子集,每个子​​集中沿着沿着最佳选择的扩散编码方向组成的六个DWI卷,该编码方向是对张力配件的稳健,然后沿着拟合的扩散张量沿所有获取的方向合成DWI体积使用数据的每个子集作为CNN的输入数据。另一方面,SDNDTI沿着使用所有获取的数据作为训练目标的扩散张量,沿着获取的扩散编码方向合成DWI卷。 SDNDTI使用深3维CNN从合成的DWI卷中的每个子集中消除噪声,以匹配清洁器目标DWI卷的质量,通过平均所有去噪数据的所有子集实现更高的SNR。 SDNDTI的去噪功效在于人类连接项目(HCP)提供的两种数据集和衰老中的寿命HCP。 SDNDTI结果保留了图像清晰度和纹理细节,并大大改善了原始数据的影响。 SDNDTI的结果与来自最先进的传统去噪算法包括BM4D,AONLM和MPPCA的常规去噪算法的结果相当。
translated by 谷歌翻译
计算机断层扫描(CT)使用从身体周围的传感器取出的X射线测量以产生人体的断层图像。如果X射线数据充分采样和高质量,则可以使用传统的重建算法;然而,诸如将剂量减少给患者的问题,或数据采集的几何限制可能导致低质量或不完整的数据。由于噪声和其他伪像,使用传统方法从这些数据重建的图像具有差的质量。本研究的目的是训练单个神经网络,从嘈杂或不完全CT扫描数据重建高质量CT图像,包括低剂量,稀疏视图和有限的角度场景。为了完成这项任务,我们将生成的对冲网络(GaN)作为信号训练,以与CT数据的迭代同步代数重建技术(SART)结合使用。网络包括自我关注块,以模拟数据中的远程依赖性。我们将我们的自我关注GaN进行CT图像重建,包括几种最先进的方法,包括去噪循环GaN,Circle GaN和总变化的校长算法。我们的方法被证明是可以相当的整体性能来圈出GaN,同时优于其他两种方法。
translated by 谷歌翻译
基于深度学习的脑磁共振成像(MRI)重建方法有可能加速MRI采集过程。尽管如此,科学界缺乏适当的基准,以评估高分辨率大脑图像的MRI重建质量,并评估这些所提出的算法在存在小而且预期的数据分布班次存在下的表现。多线圈磁共振图像(MC-MRI)重建挑战提供了一种基准,其目的在于使用高分辨率,三维,T1加权MRI扫描的大型数据集。挑战有两个主要目标:1)比较该数据集和2)上的不同的MRI重建模型,并评估这些模型的概括性,以通过不同数量的接收器线圈获取的数据。在本文中,我们描述了挑战实验设计,并总结了一系列基线和艺术脑MRI重建模型的结果。我们提供有关目前MRI重建最先进的相关比较信息,并突出挑战在更广泛的临床采用之前获得所需的普遍模型。 MC-MRI基准数据,评估代码和当前挑战排行榜可公开可用。它们为脑MRI重建领域的未来发展提供了客观性能评估。
translated by 谷歌翻译
在过去的十年中,卷积神经网络(Convnets)主导了医学图像分析领域。然而,发现脉搏的性能仍然可以受到它们无法模拟图像中体素之间的远程空间关系的限制。最近提出了众多视力变压器来解决哀悼缺点,在许多医学成像应用中展示最先进的表演。变压器可以是用于图像配准的强烈候选者,因为它们的自我注意机制能够更精确地理解移动和固定图像之间的空间对应。在本文中,我们呈现透射帧,一个用于体积医学图像配准的混合变压器-Cromnet模型。我们还介绍了三种变速器的变形,具有两个散晶变体,确保了拓扑保存的变形和产生良好校准的登记不确定性估计的贝叶斯变体。使用来自两个应用的体积医学图像的各种现有的登记方法和变压器架构进行广泛验证所提出的模型:患者间脑MRI注册和幻影到CT注册。定性和定量结果表明,传输和其变体导致基线方法的实质性改进,展示了用于医学图像配准的变压器的有效性。
translated by 谷歌翻译
我们为图像去噪提供了一个名为自我验证的新正规化。使用网络以前的深度图像而不是传统的预定义先决义的阵列制定了这种正则化。具体而言,我们将网络的输出视为“先前”,我们在“重新注册”之后再次欺骗。再次去噪图像与其之前的比较可以解释为网络的去噪能力的自我验证。我们证明自我验证鼓励网络捕获恢复图像所需的低级图像统计数据。基于这种自我验证正规化,我们进一步表明,即使它没有看到任何清洁图像,网络也可以学习去代标。这种学习策略是自我监督的,我们将其称为自我验证图像去噪(SVID)。 SVID可以被视为基于学习的方法和传统的基于模型的去噪方法的混合,其中使用网络的输出自适应地配制正则化。我们仅使用观察到损坏的数据显示SVID对各种去噪任务的应用。它可以实现接近监督CNN的去噪性能。
translated by 谷歌翻译
低剂量和高剂量CT图像的采集条件通常是不同的,因此CT数字的变化经常发生。因此,学习目标图像分布的无监督深度学习方法通常会引入CT数字扭曲,并在诊断性能中造成不利影响。为了解决这个问题,我们在这里提出了一种新颖的无监督学习方法,用于使用贴剂深度度量学习进行低水平CT重建。关键的想法是通过拉动具有相同解剖结构的图像贴片的正面对来学习嵌入空间,并推动具有相同噪声水平的负对。因此,该网络经过训练以抑制噪声水平,同时即使在图像翻译后仍保留原始的全局CT数字分布。实验结果证实,我们的深度度量学习在产生没有CT数字的高质量DeNocied图像中起着至关重要的作用。
translated by 谷歌翻译
荧光显微镜是促进生物医学研究发现的关键驱动力。但是,随着显微镜硬件的局限性和观察到的样品的特征,荧光显微镜图像易受噪声。最近,已经提出了一些自我监督的深度学习(DL)denoising方法。但是,现有方法的训练效率和降解性能在实际场景噪声中相对较低。为了解决这个问题,本文提出了自我监督的图像denoising方法噪声2SR(N2SR),以训练基于单个嘈杂观察的简单有效的图像Denoising模型。我们的noings2SR Denoising模型设计用于使用不同维度的配对嘈杂图像进行训练。从这种训练策略中受益,Noige2SR更有效地自我监督,能够从单个嘈杂的观察结果中恢复更多图像细节。模拟噪声和真实显微镜噪声的实验结果表明,噪声2SR优于两个基于盲点的自我监督深度学习图像Denoising方法。我们设想噪声2SR有可能提高更多其他类型的科学成像质量。
translated by 谷歌翻译
仅使用少量数据学习神经网络是一个重要的研究主题,具有巨大的应用潜力。在本文中,我们介绍了基于归一化流量的成像中反问题的变异建模的常规化器。我们的常规器称为PatchNR,涉及在很少的图像的贴片上学习的正常流。特别是,培训独立于考虑的逆问题,因此可以将相同的正规化程序用于在同一类图像上作用的不同前向操作员。通过研究斑块的分布与整个图像类别的分布,我们证明我们的变分模型确实是一种地图方法。如果有其他监督信息,我们的模型可以推广到有条件的补丁。材料图像和低剂量或限量角度计算机断层扫描(CT)的层分辨率的数值示例表明,我们的方法在具有相似假设的方法之间提供了高质量的结果,但仅需要很少的数据。
translated by 谷歌翻译
Low-dose computed tomography (CT) plays a significant role in reducing the radiation risk in clinical applications. However, lowering the radiation dose will significantly degrade the image quality. With the rapid development and wide application of deep learning, it has brought new directions for the development of low-dose CT imaging algorithms. Therefore, we propose a fully unsupervised one sample diffusion model (OSDM)in projection domain for low-dose CT reconstruction. To extract sufficient prior information from single sample, the Hankel matrix formulation is employed. Besides, the penalized weighted least-squares and total variation are introduced to achieve superior image quality. Specifically, we first train a score-based generative model on one sinogram by extracting a great number of tensors from the structural-Hankel matrix as the network input to capture prior distribution. Then, at the inference stage, the stochastic differential equation solver and data consistency step are performed iteratively to obtain the sinogram data. Finally, the final image is obtained through the filtered back-projection algorithm. The reconstructed results are approaching to the normal-dose counterparts. The results prove that OSDM is practical and effective model for reducing the artifacts and preserving the image quality.
translated by 谷歌翻译