扩散加权图像(DWIS)中的噪声降低了扩散张量磁共振成像(DTI)导出的微结构参数的准确性和精度,并导致延长的采集时间来实现改进的信噪比(SNR)。基于深度学习的图像去噪使用卷积神经网络(CNNS)具有卓越的性能,但通常需要额外的高SNR数据来监督CNN的培训,这降低了实际可行性。我们开发了一个自我监督的深度学习的方法,标题为“SDNDTI”,用于去噪DTI数据,这不需要额外的高SNR数据进行培训。具体地,SDNDTI将多向DTI数据划分为许多子集,每个子​​集中沿着沿着最佳选择的扩散编码方向组成的六个DWI卷,该编码方向是对张力配件的稳健,然后沿着拟合的扩散张量沿所有获取的方向合成DWI体积使用数据的每个子集作为CNN的输入数据。另一方面,SDNDTI沿着使用所有获取的数据作为训练目标的扩散张量,沿着获取的扩散编码方向合成DWI卷。 SDNDTI使用深3维CNN从合成的DWI卷中的每个子集中消除噪声,以匹配清洁器目标DWI卷的质量,通过平均所有去噪数据的所有子集实现更高的SNR。 SDNDTI的去噪功效在于人类连接项目(HCP)提供的两种数据集和衰老中的寿命HCP。 SDNDTI结果保留了图像清晰度和纹理细节,并大大改善了原始数据的影响。 SDNDTI的结果与来自最先进的传统去噪算法包括BM4D,AONLM和MPPCA的常规去噪算法的结果相当。
translated by 谷歌翻译
敏感性张量成像(STI)是一种新兴的磁共振成像技术,它以二阶张量模型来表征各向异性组织磁敏感性。 STI有可能为白质纤维途径的重建以及在MM分辨率下的大脑中的髓磷脂变化的检测提供信息,这对于理解健康和患病大脑的大脑结构和功能具有很大的价值。但是,STI在体内的应用受到了繁琐且耗时的采集要求,以测量易感性引起的MR相变为多个(通常超过六个)的头部方向。由于头圈的物理限制,头部旋转角的限制增强了这种复杂性。结果,STI尚未广泛应用于体内研究。在这项工作中,我们通过为STI的图像重建算法提出利用数据驱动的先验来解决这些问题。我们的方法称为DEEPSTI,通过深层神经网络隐式地了解了数据,该网络近似于STI的正常器函数的近端操作员。然后,使用学习的近端网络对偶极反转问题进行迭代解决。使用模拟和体内人类数据的实验结果表明,根据重建张量图,主要特征向量图和拖拉术结果,对最先进的算法的改进很大六个不同的方向。值得注意的是,我们的方法仅在人体内的一个方向上实现了有希望的重建结果,我们证明了该技术在估计多发性硬化症患者中估计病变易感性各向异性的潜在应用。
translated by 谷歌翻译
扩散张量心脏磁共振(DT-CMR)使我们能够探测体内心肌内心肌细胞的微观结构排列,这是不可侵袭性的,这是其他成像方式不允许的。这种创新的技术可以彻底改变执行心脏临床诊断,风险分层,预后和治疗随访的能力。但是,DT-CMR目前效率低下,获得单个2D静态图像所需的六分钟以上。因此,DT-CMR目前仅限于研究,但在临床上不使用。我们建议减少生产DT-CMR数据集并随后将其降低所需的重复次数,从而减少通过线性因子的采集时间,同时保持可接受的图像质量。我们提出的基于生成的对抗网络,视觉变压器和合奏学习的方法比以前提出的方法表现出色,而且要好得多,从而使单一的呼吸息dt-CMR更接近现实。
translated by 谷歌翻译
从磁共振成像(MRI)数据(称为颅骨条状)中去除非脑信号是许多神经图像分析流的组成部分。尽管它们很丰富,但通常是针对具有特定采集特性的图像量身定制的,即近乎各向异性的分辨率和T1加权(T1W)MRI对比度,这些分辨率在研究环境中很普遍。结果,现有的工具倾向于适应其他图像类型,例如在诊所常见的快速旋转回声(FSE)MRI中获得的厚切片。尽管近年来基于学习的大脑提取方法已获得吸引力,但这些方法面临着类似的负担,因为它们仅对训练过程中看到的图像类型有效。为了在成像协议的景观中实现强大的颅骨缠身,我们引入了Synthstrip,这是一种快速,基于学习的脑萃取工具。通过利用解剖学分割来生成具有解剖学,强度分布和远远超过现实医学图像范围的完全合成训练数据集,Synthstrip学会了成功推广到各种真实获得的大脑图像,从而消除了使用训练数据的需求目标对比。我们证明了合成条的功效对受试者人群的各种图像采集和决议的功效,从新生儿到成人。我们显示出与流行的颅骨基线的准确性的实质性提高 - 所有这些基线都采用单个训练有素的模型。我们的方法和标记的评估数据可在https://w3id.org/synthstrip上获得。
translated by 谷歌翻译
目的:开发一种适用于具有非平滑相位变化的扩散加权(DW)图像的鲁棒部分傅里叶(PF)重建算法。方法:基于展开的近端分裂算法,导出了一种神经网络架构,其在经常复卷卷积实现的数据一致性操作和正则化之间交替。为了利用相关性,在考虑到置换方面,共同重建相同切片的多重重复。该算法在60名志愿者的DW肝脏数据上培训,并回顾性和预期的不同解剖和分辨率的次样本数据评估。结果:该方法能够在定量措施以及感知图像质量方面具有显着优异地优于追溯子采样数据的传统PF技术。在这种情况下,发现重复的联合重建以及特定类型的经常性网络展开展开是有益的重建质量。在预期的PF采样数据上,所提出的方法使得DW成像能够在不牺牲图像分辨率或引入额外的伪影的情况下进行DW成像。或者,它可以用来对抗具有更高分辨率的获取的TE增加。此外,可以向展示训练集中的解剖学和对比度显示普遍性的脑数据。结论:这项工作表明,即使在易于相位变化的解剖中的强力PF因子中,DW数据的强大PF重建也是可行的。由于所提出的方法不依赖于阶段的平滑度前沿,而是使用学习的经常性卷积,因此可以避免传统PF方法的伪像。
translated by 谷歌翻译
在训练阶段通常使用辍学作为正则化方法,并用于量化深度学习的不确定性。我们建议在培训期间使用辍学以及推理步骤,以及平均多种预测,以提高准确性,同时减少和量化不确定性。评估结果对仅3方向扫描获得的分数各向异性(FA)和平均扩散率(MD)映射。通过我们的方法,与无丢失的网络输出相比,可以显着提高准确性,特别是当训练数据集很小时。此外,产生置信度图,这可能有助于诊断看不见的病理学或伪影。
translated by 谷歌翻译
Magnetic Resonance Fingerprinting (MRF) is an efficient quantitative MRI technique that can extract important tissue and system parameters such as T1, T2, B0, and B1 from a single scan. This property also makes it attractive for retrospectively synthesizing contrast-weighted images. In general, contrast-weighted images like T1-weighted, T2-weighted, etc., can be synthesized directly from parameter maps through spin-dynamics simulation (i.e., Bloch or Extended Phase Graph models). However, these approaches often exhibit artifacts due to imperfections in the mapping, the sequence modeling, and the data acquisition. Here we propose a supervised learning-based method that directly synthesizes contrast-weighted images from the MRF data without going through the quantitative mapping and spin-dynamics simulation. To implement our direct contrast synthesis (DCS) method, we deploy a conditional Generative Adversarial Network (GAN) framework and propose a multi-branch U-Net as the generator. The input MRF data are used to directly synthesize T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) images through supervised training on paired MRF and target spin echo-based contrast-weighted scans. In-vivo experiments demonstrate excellent image quality compared to simulation-based contrast synthesis and previous DCS methods, both visually as well as by quantitative metrics. We also demonstrate cases where our trained model is able to mitigate in-flow and spiral off-resonance artifacts that are typically seen in MRF reconstructions and thus more faithfully represent conventional spin echo-based contrast-weighted images.
translated by 谷歌翻译
基于深度学习的脑磁共振成像(MRI)重建方法有可能加速MRI采集过程。尽管如此,科学界缺乏适当的基准,以评估高分辨率大脑图像的MRI重建质量,并评估这些所提出的算法在存在小而且预期的数据分布班次存在下的表现。多线圈磁共振图像(MC-MRI)重建挑战提供了一种基准,其目的在于使用高分辨率,三维,T1加权MRI扫描的大型数据集。挑战有两个主要目标:1)比较该数据集和2)上的不同的MRI重建模型,并评估这些模型的概括性,以通过不同数量的接收器线圈获取的数据。在本文中,我们描述了挑战实验设计,并总结了一系列基线和艺术脑MRI重建模型的结果。我们提供有关目前MRI重建最先进的相关比较信息,并突出挑战在更广泛的临床采用之前获得所需的普遍模型。 MC-MRI基准数据,评估代码和当前挑战排行榜可公开可用。它们为脑MRI重建领域的未来发展提供了客观性能评估。
translated by 谷歌翻译
磁共振图像的降解有益于提高低信噪比图像的质量。最近,使用深层神经网络进行DENOSING表现出了令人鼓舞的结果。但是,这些网络大多数都利用监督学习,这需要大量的噪声和清洁图像对的培训图像。获得训练图像,尤其是干净的图像,既昂贵又耗时。因此,已经开发了仅需要成对噪声浪费图像的噪声2Noise(N2N)之类的方法来减轻获得训练数据集的负担。在这项研究中,我们提出了一种新的自我监督的denoising方法Coil2Coil(C2C),该方法不需要获取干净的图像或配对的噪声浪费图像进行训练。取而代之的是,该方法利用了从分阶段阵列线圈中的多通道数据来生成训练图像。首先,它将多通道线圈图像分为两个图像,一个用于输入,另一个用于标签。然后,它们被处理以施加噪声独立性和敏感性归一化,以便它们可用于N2N的训练图像。为了推断,该方法输入了一个线圈组合的图像(例如DICOM图像),从而允许该方法的广泛应用。当使用合成噪声添加的图像进行评估时,C2C对几种自我监督方法显示了最佳性能,从而报告了与监督方法的可比结果。在测试DICOM图像时,C2C成功地将真实噪声降低,而没有显示误差图中的结构依赖性残差。由于不需要对清洁或配对图像进行额外扫描的显着优势,因此可以轻松地用于各种临床应用。
translated by 谷歌翻译
每年都会在医院中获得数百万个大脑MRI扫描,这比任何研究数据集的规模都要大得多。因此,分析此类扫描的能力可以改变神经成像研究。然而,由于没有自动化算法可以应对临床采集的高度可变性(MR对比度,分辨率,方向等),因此它们的潜力仍未开发。在这里,我们提出了Synthseg+,这是一个AI分割套件,首次可以对异质临床数据集进行强有力的分析。具体而言,除了全脑分割外,SynthSeg+还执行皮质细胞,颅内体积估计和自动检测故障分割(主要是由质量非常低的扫描引起的)。我们在七个实验中证明了合成++,包括对14,000张扫描的老化研究,在该研究中,它准确地复制了在质量更高的数据上观察到的萎缩模式。 Synthseg+公开发布是一种现成的工具,可在广泛设置中解锁定量形态计量学的潜力。
translated by 谷歌翻译
主要的神经影像学研究推动了1.0 mm以下的3T MRI采集分辨率,以改善结构定义和形态学。然而,只有很少的时间 - 密集的自动化图像分析管道已被验证为高分辨率(雇用)设置。另一方面,有效的深度学习方法很少支持多个固定分辨率(通常1.0 mm)。此外,缺乏标准的杂交数据分辨率以及具有足够覆盖的扫描仪,年龄,疾病或遗传方差的多样化数据的有限可用性会带来额外的,未解决的挑战培训网络。将分辨率独立于基于深度学习的分割,即在一系列不同的体素大小上以其本地分辨率进行分辨率的能力,承诺克服这些挑战,但目前没有这种方法。我们现在通过向决议独立的分割任务(VINN)引入VINOSEIZED独立的神经网络(VINN)来填补这个差距,并呈现FastSurfervinn,(i)建立并实施决议独立,以获得深度学习作为同时支持0.7-1.0 mm的第一种方法分割,(ii)显着优于跨决议的最先进方法,(iii)减轻雇用数据集中存在的数据不平衡问题。总体而言,内部分辨率 - 独立性相互益处雇用和1.0 mm MRI分割。通过我们严格验证的FastSurfervinn,我们将为不同的神经视线镜分析分发一个快速工具。此外,VINN架构表示更广泛应用的有效分辨率的分段方法
translated by 谷歌翻译
用于医学图像重建的深度神经网络传统上使用高质量的地基图像作为训练目标训练。最近关于噪声的工作(N2N)已经示出了使用与具有地面真理的多个噪声测量的潜力。然而,现有的基于N2N的方法不适合于从经历非身份变形的物体的测量来学习。本文通过补偿对象变形来提出用于训练深层重建网络的变形补偿学习(DecoLearn)方法来解决此问题。DecoLearn的一个关键组件是一个深度登记模块,它与深度重建网络共同培训,没有任何地理监督。我们在模拟和实验收集的磁共振成像(MRI)数据上验证了甲板,并表明它显着提高了成像质量。
translated by 谷歌翻译
由于扩散张量成像(DTI)由于其独特的非侵入性评估心脏微观结构的能力而获得了心脏成像的流行,因此基于深度学习的人工智能正在成为减轻其一些缺点的重要工具,例如长期扫描时间。由于经常在快节奏的研究环境中发生,因此许多重点是展示深度学习的能力,而通常没有足够的时间来研究什么投入和建筑属性将使心脏DTI加速最大。在这项工作中,我们比较了几种输入类型(幅度图像与复杂图像),多个维度(2D vs 3D操作)以及多个输入类型(单片与多板)对训练训练的模型的性能的效果由同时的多层(SMS)采集引起的人工制品。尽管我们最初的直觉,但我们的实验表明,对于固定数量的参数,更简单的2D实价模型的表现优于其更高级的3D或复杂的对应物。最好的性能是,尽管使用获得的数据的幅度和相位组件训练了实现的模型。我们认为,这种行为是由于实现的模型可以更好地利用较低的参数,并且由于我们实验中使用的低SMS加速度因子,因此无法利用空间信息的3D模型无法利用空间信息。
translated by 谷歌翻译
最近关于其他方式的核化图像T1辅助MRI重建的研究表明,进一步加速MRI收购其他方式的潜力。大多数最先进的方法通过开发用于固定的欠采样模式的网络架构来实现改进,而不完全利用方式之间的互补信息。尽管可以简单地修改现有的下采样模式学习算法以允许完全采样的T1加权MR图像来辅助模式学习,但是可以实现重建任务的显着改进。为此,我们提出了一个迭代框架,优化了MRI获取的另一种方式的采样下采样模式,可以在不同的下抽样因子中补充完全采样的T1加权MR图像,同时共同优化T1辅助MRI重建模型。具体地,我们所提出的方法利用两种模式之间的潜在信息的差异来确定可以最大化T1加权MR图像的辅助功率在改善MRI重建时最大化的采样模式。与常用的下采样模式和最先进的方法相比,我们在公共数据集中展示了我们在公共数据集上的学习的下采样模式的卓越表现,可以联合优化重建网络和欠采样模式以8倍的取样因子。
translated by 谷歌翻译
图像去噪是许多领域下游任务的先决条件。低剂量和光子计数计算断层扫描(CT)去噪可以在最小化辐射剂量下优化诊断性能。监督深层去噪方法是流行的,但需要成对的清洁或嘈杂的样本通常在实践中不可用。受独立噪声假设的限制,电流无监督的去噪方法不能处理与CT图像中的相关噪声。在这里,我们提出了一种基于类似的类似性的无人监督的无监督的深度去噪方法,称为Coxing2Sim,以非局部和非线性方式起作用,不仅抑制独立而且还具有相关的噪音。从理论上讲,噪声2SIM在温和条件下渐近相当于监督学习方法。通过实验,Nosie2SIM从嘈杂的低剂量CT和光子计数CT图像中的内在特征,从视觉上,定量和统计上有效地或甚至优于实际数据集的监督学习方法。 Coke2Sim是一般无监督的去噪方法,在不同的应用中具有很大的潜力。
translated by 谷歌翻译
Self-supervised image denoising techniques emerged as convenient methods that allow training denoising models without requiring ground-truth noise-free data. Existing methods usually optimize loss metrics that are calculated from multiple noisy realizations of similar images, e.g., from neighboring tomographic slices. However, those approaches fail to utilize the multiple contrasts that are routinely acquired in medical imaging modalities like MRI or dual-energy CT. In this work, we propose the new self-supervised training scheme Noise2Contrast that combines information from multiple measured image contrasts to train a denoising model. We stack denoising with domain-transfer operators to utilize the independent noise realizations of different image contrasts to derive a self-supervised loss. The trained denoising operator achieves convincing quantitative and qualitative results, outperforming state-of-the-art self-supervised methods by 4.7-11.0%/4.8-7.3% (PSNR/SSIM) on brain MRI data and by 43.6-50.5%/57.1-77.1% (PSNR/SSIM) on dual-energy CT X-ray microscopy data with respect to the noisy baseline. Our experiments on different real measured data sets indicate that Noise2Contrast training generalizes to other multi-contrast imaging modalities.
translated by 谷歌翻译
已经提出了几十年来捕获胶质瘤的生长,最常见的原发性脑肿瘤的反应扩散模型。然而,关于估计这些模型的初始条件和参数值的严重局限性将其临床用作作为个性化工具。在这项工作中,我们调查了深度卷积神经网络(DCNN)来解决现场遇到的缺陷的能力。基于从磁共振(MR)数据的磁共振(MR)数据产生的1,200种合成肿瘤,我们证明了DCNN在单个时间点仅从两个成像轮廓重建整个肿瘤细胞密度分布的能力。通过在先前时间点提取额外的成像轮廓,我们还证明了DCNN准确估计模型的各个扩散性和增殖参数的能力。从这些知识来看,最终可以使用该模型精确地捕获稍后时间点处的肿瘤细胞密度分布的时空演变。我们终于展示了我们对真正的胶质母细胞瘤患者的先生数据的适用性。这种方法可以打开反应扩散生长模型的临床应用的视角,用于肿瘤预后和治疗计划。
translated by 谷歌翻译
在这项工作中,我们评估了如何利用具有周期性激活功能的神经网络可靠地压缩大型多维医学图像数据集,并将概念验证应用应用于4D扩散加权MRI(DMRI)。在医学成像景观中,多维MRI是开发对基础组织微观结构既敏感又具有特异性的生物标志物的关键研究领域。但是,这些数据的高维质在存储和共享功能和相关成本方面构成了挑战,需要适当的算法能够在低维空间中表示信息。深度学习中的最新理论发展表明了周期性激活函数如何成为隐式神经表示图像的强大工具,并且可以用于压缩2D图像。在这里,我们将此方法扩展到4D图像,并展示如何通过正弦激活网络的参数准确地表示任何给定的4D DMRI数据集,从而达到数据压缩率是标准放气算法的10倍。我们的结果表明,所提出的方法优于基准relu和tanh激活感知到均方根误差,峰值信噪比和结构相似性指数。随后使用张量和球形谐波表示的随后分析表明,所提出的损耗压缩可准确再现原始数据的特征,从而导致相对误差约5至10倍,比基准JPEG2000有损耗压缩低约5至10倍,与标准预处理步骤相似,例如MP-PCA表示,表明在当前接受的临床应用水平内丧失信息。
translated by 谷歌翻译
临床实践中使用的医学图像是异质的,与学术研究中研究的扫描质量不同。在解剖学,伪影或成像参数不寻常或方案不同的极端情况下,预处理会分解。最需要对这些变化的方法可靠。提出了一种新颖的深度学习方法,以将人脑快速分割为132个区域。提出的模型使用有效的U-NET型网络,并从不同视图和分层关系的交点上受益,以在端到端训练期间融合正交2D平面和脑标签。部署了弱监督的学习,以利用部分标记的数据来进行整个大脑分割和颅内体积(ICV)的估计。此外,数据增强用于通过生成具有较高的脑扫描的磁共振成像(MRI)数据来扩展模型训练,同时保持数据隐私。提出的方法可以应用于脑MRI数据,包括头骨或任何其他工件,而无需预处理图像或性能下降。与最新的一些实验相比,使用了不同的Atlases的几项实验,以评估受过训练模型的分割性能,并且与不同内部和不同内部和不同内部方法的现有方法相比,结果显示了较高的分割精度和鲁棒性。间域数据集。
translated by 谷歌翻译
尽管数据增强和转移学习有所进步,但卷积神经网络(CNNS)难以推广到看不见的域。在分割大脑扫描时,CNN对分辨率和对比度的变化非常敏感:即使在相同的MRI模式内,则性能可能会跨数据集减少。在这里,我们介绍了Synthseg,第一个分段CNN无关紧要对比和分辨率。 Synthseg培训,用从分段上的生成模型采样的合成数据培训。至关重要,我们采用域随机化策略,我们完全随机开启了合成培训数据的对比度和解决。因此,Synthseg可以在没有再培训或微调的情况下对任何目标结构域进行真实扫描,这是首次分析大量的异构临床数据。因为Synthseg仅需要进行培训(无图像),所以它可以从通过不同群体的对象(例如,老化和患病)的自动化方法获得的标签中学习,从而实现广泛的形态变异性的鲁棒性。我们展示了Synthseg在六种方式的5,300扫描和十项决议中,与监督CNN,最先进的域适应和贝叶斯分割相比,它表现出无与伦比的泛化。最后,我们通过将其施加到心脏MRI和CT分割来证明SyntheeG的恒定性。
translated by 谷歌翻译