由于扩散张量成像(DTI)由于其独特的非侵入性评估心脏微观结构的能力而获得了心脏成像的流行,因此基于深度学习的人工智能正在成为减轻其一些缺点的重要工具,例如长期扫描时间。由于经常在快节奏的研究环境中发生,因此许多重点是展示深度学习的能力,而通常没有足够的时间来研究什么投入和建筑属性将使心脏DTI加速最大。在这项工作中,我们比较了几种输入类型(幅度图像与复杂图像),多个维度(2D vs 3D操作)以及多个输入类型(单片与多板)对训练训练的模型的性能的效果由同时的多层(SMS)采集引起的人工制品。尽管我们最初的直觉,但我们的实验表明,对于固定数量的参数,更简单的2D实价模型的表现优于其更高级的3D或复杂的对应物。最好的性能是,尽管使用获得的数据的幅度和相位组件训练了实现的模型。我们认为,这种行为是由于实现的模型可以更好地利用较低的参数,并且由于我们实验中使用的低SMS加速度因子,因此无法利用空间信息的3D模型无法利用空间信息。
translated by 谷歌翻译
扩散张量心脏磁共振(DT-CMR)使我们能够探测体内心肌内心肌细胞的微观结构排列,这是不可侵袭性的,这是其他成像方式不允许的。这种创新的技术可以彻底改变执行心脏临床诊断,风险分层,预后和治疗随访的能力。但是,DT-CMR目前效率低下,获得单个2D静态图像所需的六分钟以上。因此,DT-CMR目前仅限于研究,但在临床上不使用。我们建议减少生产DT-CMR数据集并随后将其降低所需的重复次数,从而减少通过线性因子的采集时间,同时保持可接受的图像质量。我们提出的基于生成的对抗网络,视觉变压器和合奏学习的方法比以前提出的方法表现出色,而且要好得多,从而使单一的呼吸息dt-CMR更接近现实。
translated by 谷歌翻译
扩散加权图像(DWIS)中的噪声降低了扩散张量磁共振成像(DTI)导出的微结构参数的准确性和精度,并导致延长的采集时间来实现改进的信噪比(SNR)。基于深度学习的图像去噪使用卷积神经网络(CNNS)具有卓越的性能,但通常需要额外的高SNR数据来监督CNN的培训,这降低了实际可行性。我们开发了一个自我监督的深度学习的方法,标题为“SDNDTI”,用于去噪DTI数据,这不需要额外的高SNR数据进行培训。具体地,SDNDTI将多向DTI数据划分为许多子集,每个子​​集中沿着沿着最佳选择的扩散编码方向组成的六个DWI卷,该编码方向是对张力配件的稳健,然后沿着拟合的扩散张量沿所有获取的方向合成DWI体积使用数据的每个子集作为CNN的输入数据。另一方面,SDNDTI沿着使用所有获取的数据作为训练目标的扩散张量,沿着获取的扩散编码方向合成DWI卷。 SDNDTI使用深3维CNN从合成的DWI卷中的每个子集中消除噪声,以匹配清洁器目标DWI卷的质量,通过平均所有去噪数据的所有子集实现更高的SNR。 SDNDTI的去噪功效在于人类连接项目(HCP)提供的两种数据集和衰老中的寿命HCP。 SDNDTI结果保留了图像清晰度和纹理细节,并大大改善了原始数据的影响。 SDNDTI的结果与来自最先进的传统去噪算法包括BM4D,AONLM和MPPCA的常规去噪算法的结果相当。
translated by 谷歌翻译
基于深度学习的脑磁共振成像(MRI)重建方法有可能加速MRI采集过程。尽管如此,科学界缺乏适当的基准,以评估高分辨率大脑图像的MRI重建质量,并评估这些所提出的算法在存在小而且预期的数据分布班次存在下的表现。多线圈磁共振图像(MC-MRI)重建挑战提供了一种基准,其目的在于使用高分辨率,三维,T1加权MRI扫描的大型数据集。挑战有两个主要目标:1)比较该数据集和2)上的不同的MRI重建模型,并评估这些模型的概括性,以通过不同数量的接收器线圈获取的数据。在本文中,我们描述了挑战实验设计,并总结了一系列基线和艺术脑MRI重建模型的结果。我们提供有关目前MRI重建最先进的相关比较信息,并突出挑战在更广泛的临床采用之前获得所需的普遍模型。 MC-MRI基准数据,评估代码和当前挑战排行榜可公开可用。它们为脑MRI重建领域的未来发展提供了客观性能评估。
translated by 谷歌翻译
可解释性和鲁棒性必须在临床应用中整合加速磁共振成像(MRI)重建的机器学习方法。这样做会允许快速高质量的解剖和病理学成像。数据一致性(DC)对于多模态数据的泛化至关重要,以及检测病理学的鲁棒性。这项工作提出了独立复发推理机(CIRIM)的级联,通过展开优化来评估DC,通过梯度下降,并通过设计的术语明确地明确。我们对CIRIM与其他展开的优化方法进行广泛的比较,是端到端变分网络(E2EVN)和轮辋,以及UNET和压缩感测(CS)。评估是分两个阶段完成的。首先,评估关于多次训练的MRI模型的学习,即用{t_1} $ - 加权和平凡对比,以及$ {t_2} $ - 加权膝盖数据。其次,在通过3D Flair MRI数据中重建依赖多发性硬化(MS)患者的3D Flair MRI数据来测试鲁棒性。结果表明,CIRIM在隐式强制执行DC时表现最佳,而E2EVN需要明确制定的DC。 CIRIM在重建临床MS数据时显示出最高病变对比度分辨率。与CS相比,性能提高了大约11%,而重建时间是二十次减少。
translated by 谷歌翻译
目的:动脉自旋标记(ASL)灌注成像表示脑血流(CBF)的直接和绝对测量。动脉转运时间(ATT)是一个相关的生理参数,反映了标记的旋转到达感兴趣的大脑区域的持续时间。多个标签后延迟(PLD)可以提供CBF和ATT的强大度量,从而可以根据ATT优化区域CBF建模。延长的获取时间可以潜在地降低CBF和ATT估计的质量和准确性。我们提出了一个新型网络,以显着减少具有较高信噪比(SNR)的PLD数量。方法:对一个PLD和两个PLD SEPA-列表进行了CBF和ATT估计。对每个模型进行独立训练,以学习从灌注加权图像(PWI)到CBF和ATT图像的非线性转换。结果:One-PLD和两个PLD模型在CBF上的视觉上优于常规方法,而两PLD模型在ATT估计上显示出更准确的结构。所提出的方法将PLD的数量从ATT上的6个降低到2,甚至在CBF上的单个PLD中,而无需牺牲SNR。结论:使用高质量的深度学习生成CBF和ATT地图可行。
translated by 谷歌翻译
加速的MRI从稀疏采样的信号数据中重建了临床解剖学的图像,以减少患者扫描时间。尽管最近的作品利用了深入的学习来完成这项任务,但这种方法通常只在没有信号损坏或资源限制的模拟环境中进行了探索。在这项工作中,我们探索了神经网络MRI图像重建器的增强,以增强其临床相关性。也就是说,我们提出了一个用于检测图像源的Convnet模型,该模型可以实现分类器$ f_2 $得分为$ 79.1 \%$ $。我们还证明,具有可变加速度因子的MR信号数据的培训重建器可以在临床患者扫描期间提高其平均性能,最高$ 2 \%$。当模型学会重建多个解剖和方向的MR图像时,我们提供损失功能来克服灾难性的遗忘。最后,我们提出了一种使用模拟幻影数据在临床获取数据集和计算功能有限的情况下使用模拟幻影数据预先培训重建器的方法。我们的结果为加速MRI的临床适应提供了潜在的途径。
translated by 谷歌翻译
从磁共振成像(MRI)数据(称为颅骨条状)中去除非脑信号是许多神经图像分析流的组成部分。尽管它们很丰富,但通常是针对具有特定采集特性的图像量身定制的,即近乎各向异性的分辨率和T1加权(T1W)MRI对比度,这些分辨率在研究环境中很普遍。结果,现有的工具倾向于适应其他图像类型,例如在诊所常见的快速旋转回声(FSE)MRI中获得的厚切片。尽管近年来基于学习的大脑提取方法已获得吸引力,但这些方法面临着类似的负担,因为它们仅对训练过程中看到的图像类型有效。为了在成像协议的景观中实现强大的颅骨缠身,我们引入了Synthstrip,这是一种快速,基于学习的脑萃取工具。通过利用解剖学分割来生成具有解剖学,强度分布和远远超过现实医学图像范围的完全合成训练数据集,Synthstrip学会了成功推广到各种真实获得的大脑图像,从而消除了使用训练数据的需求目标对比。我们证明了合成条的功效对受试者人群的各种图像采集和决议的功效,从新生儿到成人。我们显示出与流行的颅骨基线的准确性的实质性提高 - 所有这些基线都采用单个训练有素的模型。我们的方法和标记的评估数据可在https://w3id.org/synthstrip上获得。
translated by 谷歌翻译
在过去的几年中,提出了多种基于深神经网络(DNN)的方法,以解决来自未取消采样的“ K-Space”(傅立叶域)数据的挑战性不足的反向问题。然而,反对采集过程中的变化和解剖学分布的不稳定性表明,与其经典的对应物相比,DNN体系结构对相关物理模型的概括不佳。较差的概括有效地排除了DNN适用于临床环境中不足采样的MRI重建。我们通过引入物理培养的DNN体系结构和培训方法来提高DNN方法的泛化MRI重建能力。除了模型体系结构中观察到的数据外,我们的体系结构还编码底面采样掩码,并采用适当的培训方法,该方法使用与各种无底采样掩码生成的数据一起鼓励模型概括了未散布的MRI重建问题。我们通过对公开可用的快速MRI数据集进行了广泛的实验,证明了我们的方法的附加价值。我们的物理提出的方法达到了增强的概括能力,这使得与获得的稳健性和解剖学分布的变化相比,尤其是在病理区域中,与香草DNN方法和DNN进行了显着提高,并在病理区域中进行了显着提高,并且受过培训的DNN训练,并接受了强烈的掩盖掩模的增强。接受训练的模型和代码以复制我们的实验,将在接受后用于研究目的。
translated by 谷歌翻译
Magnetic Resonance Fingerprinting (MRF) is an efficient quantitative MRI technique that can extract important tissue and system parameters such as T1, T2, B0, and B1 from a single scan. This property also makes it attractive for retrospectively synthesizing contrast-weighted images. In general, contrast-weighted images like T1-weighted, T2-weighted, etc., can be synthesized directly from parameter maps through spin-dynamics simulation (i.e., Bloch or Extended Phase Graph models). However, these approaches often exhibit artifacts due to imperfections in the mapping, the sequence modeling, and the data acquisition. Here we propose a supervised learning-based method that directly synthesizes contrast-weighted images from the MRF data without going through the quantitative mapping and spin-dynamics simulation. To implement our direct contrast synthesis (DCS) method, we deploy a conditional Generative Adversarial Network (GAN) framework and propose a multi-branch U-Net as the generator. The input MRF data are used to directly synthesize T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) images through supervised training on paired MRF and target spin echo-based contrast-weighted scans. In-vivo experiments demonstrate excellent image quality compared to simulation-based contrast synthesis and previous DCS methods, both visually as well as by quantitative metrics. We also demonstrate cases where our trained model is able to mitigate in-flow and spiral off-resonance artifacts that are typically seen in MRF reconstructions and thus more faithfully represent conventional spin echo-based contrast-weighted images.
translated by 谷歌翻译
在这项工作中,我们评估了如何利用具有周期性激活功能的神经网络可靠地压缩大型多维医学图像数据集,并将概念验证应用应用于4D扩散加权MRI(DMRI)。在医学成像景观中,多维MRI是开发对基础组织微观结构既敏感又具有特异性的生物标志物的关键研究领域。但是,这些数据的高维质在存储和共享功能和相关成本方面构成了挑战,需要适当的算法能够在低维空间中表示信息。深度学习中的最新理论发展表明了周期性激活函数如何成为隐式神经表示图像的强大工具,并且可以用于压缩2D图像。在这里,我们将此方法扩展到4D图像,并展示如何通过正弦激活网络的参数准确地表示任何给定的4D DMRI数据集,从而达到数据压缩率是标准放气算法的10倍。我们的结果表明,所提出的方法优于基准relu和tanh激活感知到均方根误差,峰值信噪比和结构相似性指数。随后使用张量和球形谐波表示的随后分析表明,所提出的损耗压缩可准确再现原始数据的特征,从而导致相对误差约5至10倍,比基准JPEG2000有损耗压缩低约5至10倍,与标准预处理步骤相似,例如MP-PCA表示,表明在当前接受的临床应用水平内丧失信息。
translated by 谷歌翻译
目的:开发一种适用于具有非平滑相位变化的扩散加权(DW)图像的鲁棒部分傅里叶(PF)重建算法。方法:基于展开的近端分裂算法,导出了一种神经网络架构,其在经常复卷卷积实现的数据一致性操作和正则化之间交替。为了利用相关性,在考虑到置换方面,共同重建相同切片的多重重复。该算法在60名志愿者的DW肝脏数据上培训,并回顾性和预期的不同解剖和分辨率的次样本数据评估。结果:该方法能够在定量措施以及感知图像质量方面具有显着优异地优于追溯子采样数据的传统PF技术。在这种情况下,发现重复的联合重建以及特定类型的经常性网络展开展开是有益的重建质量。在预期的PF采样数据上,所提出的方法使得DW成像能够在不牺牲图像分辨率或引入额外的伪影的情况下进行DW成像。或者,它可以用来对抗具有更高分辨率的获取的TE增加。此外,可以向展示训练集中的解剖学和对比度显示普遍性的脑数据。结论:这项工作表明,即使在易于相位变化的解剖中的强力PF因子中,DW数据的强大PF重建也是可行的。由于所提出的方法不依赖于阶段的平滑度前沿,而是使用学习的经常性卷积,因此可以避免传统PF方法的伪像。
translated by 谷歌翻译
MRI扫描时间减少通常通过并行成像方法实现,通常基于逆图像空间(A.K.A.K空间)的均匀下采样和具有多个接收器线圈的同时信号接收。 Grappa方法通过跨越所有线圈的相邻获取信号的线性组合来插入缺失的k空间信号,并且可以通过k空间中的卷积来描述。最近,介绍了一种称为RAKI的更广泛的方法。 Raki是一种深入学习方法,将Grappa推广到附加的卷积层,在此期间应用非线性激活功能。这使得卷积神经网络能够实现缺失信号的非线性估计。与Grappa类似,Raki中的卷积核心使用从自动校准信号(ACS)获得的特定训练样本进行培训。 Raki与Grappa相比提供了卓越的重建质量,然而,由于其未知参数的数量增加,通常需要更多的AC。为了克服这一限制,本研究调查了训练数据对标准2D成像重建质量的影响,特别关注其金额和对比信息。此外,评估迭代k空间插值方法(araki),包括通过初始的格拉普重建训练数据增强,并通过迭代培训改进卷积滤波器。仅使用18,20和25个ACS线(8%),通过抑制在加速度因子R = 4和r = 5时发生的残余人工制品,并且与Grappa相比,通过定量质量指标加下划线,产生强烈的噪声抑制。与相约束的组合进一步改善。此外,在预扫描校准的情况下,伊拉克基显示比GRAPPA和RAKI更好的性能,并且在训练和缺乏采样的数据之间强烈不同的对比度。
translated by 谷歌翻译
已经提出了几十年来捕获胶质瘤的生长,最常见的原发性脑肿瘤的反应扩散模型。然而,关于估计这些模型的初始条件和参数值的严重局限性将其临床用作作为个性化工具。在这项工作中,我们调查了深度卷积神经网络(DCNN)来解决现场遇到的缺陷的能力。基于从磁共振(MR)数据的磁共振(MR)数据产生的1,200种合成肿瘤,我们证明了DCNN在单个时间点仅从两个成像轮廓重建整个肿瘤细胞密度分布的能力。通过在先前时间点提取额外的成像轮廓,我们还证明了DCNN准确估计模型的各个扩散性和增殖参数的能力。从这些知识来看,最终可以使用该模型精确地捕获稍后时间点处的肿瘤细胞密度分布的时空演变。我们终于展示了我们对真正的胶质母细胞瘤患者的先生数据的适用性。这种方法可以打开反应扩散生长模型的临床应用的视角,用于肿瘤预后和治疗计划。
translated by 谷歌翻译
图像质量评估(IQA)算法旨在再现人类对图像质量的看法。图像增强,生成和恢复模型的日益普及促使开发了许多方法来评估其性能。但是,大多数IQA解决方案旨在预测通用域中的图像质量,并适用于特定区域,例如医学成像,保持可疑。此外,对于特定任务的这些IQA指标的选择通常涉及故意引起的扭曲,例如手动添加噪声或人工模糊。然而,随后选择的指标被用来判断现实生活中计算机视觉模型的输出。在这项工作中,我们渴望通过对迄今为止的磁共振成像(MRI)进行最广泛的IQA评估研究来填补这些空白(14,700个主观得分)。我们使用经过培训的神经网络模型的输出,以解决与MRI相关的问题,包括扫描加速度,运动校正和DENOSISING中的图像重建。我们的重点是反映放射科医生对重建图像的看法,评估了MRI扫描质量的最具诊断性影响的标准:信噪比,对比度与噪声比率和人工制品的存在。七位训练有素的放射科医生评估了这些扭曲的图像,其判决随后与35个不同的图像质量指标(考虑到全参考,无参考和基于分布的指标)相关。对于所有被认为是解剖学和目标任务的三个拟议质量标准,发现最高的表现者 - DIST,HAARPSI,VSI和FID-VGG16 - 在三个提出的质量标准中都是有效的。
translated by 谷歌翻译
This paper presents a subsampling-task paradigm for data-driven task-specific experiment design (ED) and a novel method in populationwide supervised feature selection (FS). Optimal ED, the choice of sampling points under constraints of limited acquisition-time, arises in a wide variety of scientific and engineering contexts. However the continuous optimization used in classical approaches depend on a-priori parameter choices and challenging non-convex optimization landscapes. This paper proposes to replace this strategy with a subsampling-task paradigm, analogous to populationwide supervised FS. In particular, we introduce JOFSTO, which performs JOint Feature Selection and Task Optimization. JOFSTO jointly optimizes two coupled networks: one for feature scoring, which provides the ED, the other for execution of a downstream task or process. Unlike most FS problems, e.g. selecting protein expressions for classification, ED problems typically select from highly correlated globally informative candidates rather than seeking a small number of highly informative features among many uninformative features. JOFSTO's construction efficiently identifies potentially correlated, but effective subsets and returns a trained task network. We demonstrate the approach using parameter estimation and mapping problems in clinically-relevant applications in quantitative MRI and in hyperspectral imaging. Results from simulations and empirical data show the subsampling-task paradigm strongly outperforms classical ED, and within our paradigm, JOFSTO outperforms state-of-the-art supervised FS techniques. JOFSTO extends immediately to wider image-based ED problems and other scenarios where the design must be specified globally across large numbers of acquisitions. Code will be released.
translated by 谷歌翻译
CSGM框架(Bora-Jalal-Price-Dimakis'17)表明,深度生成前沿可能是解决逆问题的强大工具。但是,迄今为止,此框架仅在某些数据集(例如,人称和MNIST数字)上经验成功,并且已知在分布外样品上表现不佳。本文介绍了CSGM框架在临床MRI数据上的第一次成功应用。我们在FastMri DataSet上培训了大脑扫描之前的生成,并显示通过Langevin Dynamics的后验采样实现了高质量的重建。此外,我们的实验和理论表明,后部采样是对地面定语分布和测量过程的变化的强大。我们的代码和型号可用于:\ URL {https://github.com/utcsilab/csgm-mri-langevin}。
translated by 谷歌翻译
CT灌注(CTP)是一项体检,用于测量对比度溶液通过像素逐像素的大脑通过大脑的通过。目的是为缺血性病变迅速绘制“灌注图”(即脑血体积,脑血流量和峰值的时间),并能够区分核心和甲瘤区域。在缺血性中风的背景下,精确而快速的诊断可以确定脑组织的命运,并在紧急情况下指导干预和治疗。在这项工作中,我们介绍了UnitObrain数据集,这是CTP的第一个开源数据集。它包括一百多名患者的队列,并伴随着患者元数据和最新算法获得的地面真相图。我们还建议使用欧洲图书馆ECVL和EDDL进行图像处理和开发深度学习模型,提出了一种基于神经网络的新型算法。神经网络模型获得的结果与地面真相相匹配,并为所需数量的CT地图的潜在子采样开辟了道路,这对患者施加了重辐射剂量。
translated by 谷歌翻译
Self-supervised image denoising techniques emerged as convenient methods that allow training denoising models without requiring ground-truth noise-free data. Existing methods usually optimize loss metrics that are calculated from multiple noisy realizations of similar images, e.g., from neighboring tomographic slices. However, those approaches fail to utilize the multiple contrasts that are routinely acquired in medical imaging modalities like MRI or dual-energy CT. In this work, we propose the new self-supervised training scheme Noise2Contrast that combines information from multiple measured image contrasts to train a denoising model. We stack denoising with domain-transfer operators to utilize the independent noise realizations of different image contrasts to derive a self-supervised loss. The trained denoising operator achieves convincing quantitative and qualitative results, outperforming state-of-the-art self-supervised methods by 4.7-11.0%/4.8-7.3% (PSNR/SSIM) on brain MRI data and by 43.6-50.5%/57.1-77.1% (PSNR/SSIM) on dual-energy CT X-ray microscopy data with respect to the noisy baseline. Our experiments on different real measured data sets indicate that Noise2Contrast training generalizes to other multi-contrast imaging modalities.
translated by 谷歌翻译
我们提出了明确结合频率和图像特征表示的神经网络层,并表明它们可以用作频率空间数据重建的多功能构建块。我们的工作是由MRI习得引起的挑战所激发的,该挑战是信号是所需图像的傅立叶变换。提出的联合学习方案既可以校正频率空间的天然伪像,又可以操纵图像空间表示,以重建网络各层的相干图像结构。这与图像重建的大多数当前深度学习方法形成鲜明对比,该方法分别处理频率和图像空间特征,并且通常在两个空间之一中仅运行。我们证明了联合卷积学习在各种任务中的优势,包括运动校正,denosing,从不足采样的采集中重建,以及对模拟和现实世界多层MRI数据的混合采样和运动校正。联合模型在所有任务和数据集中都始终如一地产生高质量的输出图像。当整合到具有物理启发的数据一致性约束的最终采样重建的情况下,将其集成到艺术风化的优化网络中时,提议的体系结构显着改善了优化景观,从而产生了减少训练时间的数量级。该结果表明,联合表示特别适合深度学习网络中的MRI信号。我们的代码和预算模型可在https://github.com/nalinimsingh/interlacer上公开获得。
translated by 谷歌翻译