目的:动脉自旋标记(ASL)灌注成像表示脑血流(CBF)的直接和绝对测量。动脉转运时间(ATT)是一个相关的生理参数,反映了标记的旋转到达感兴趣的大脑区域的持续时间。多个标签后延迟(PLD)可以提供CBF和ATT的强大度量,从而可以根据ATT优化区域CBF建模。延长的获取时间可以潜在地降低CBF和ATT估计的质量和准确性。我们提出了一个新型网络,以显着减少具有较高信噪比(SNR)的PLD数量。方法:对一个PLD和两个PLD SEPA-列表进行了CBF和ATT估计。对每个模型进行独立训练,以学习从灌注加权图像(PWI)到CBF和ATT图像的非线性转换。结果:One-PLD和两个PLD模型在CBF上的视觉上优于常规方法,而两PLD模型在ATT估计上显示出更准确的结构。所提出的方法将PLD的数量从ATT上的6个降低到2,甚至在CBF上的单个PLD中,而无需牺牲SNR。结论:使用高质量的深度学习生成CBF和ATT地图可行。
translated by 谷歌翻译
目的:加速径向采样的扩散加权自旋回波(RAD-DW-SE)采集方法,以生成高质量的表观扩散系数(ADC)地图。方法:开发了一种深度学习方法,以从用RAD-DW-SE方法获取的未采样的DWI数据生成准确的ADC映射重建。深度学习方法将卷积神经网络(CNN)与Vison变形金刚集成在一起,以生成从无效的DWI数据中生成高质量的ADC图,该数据由单指数ADC模型拟合项正常化。对147只小鼠的DWI数据进行了培训,并对36只小鼠的DWI数据进行了评估,其采样率为4倍和8倍。结果:消融研究和实验结果表明,所提出的深度学习模型可以从不足采样的DWI数据中生成高质量的ADC图,比在比较的替代深度学习方法中,其性能在不同级别的图像,肿瘤,肾脏和牙齿上进行了量化。肌肉。结论:具有集成CNN和变形金刚的深度学习方法提供了一种有效的手段,可以从使用RAD-DW-SE方法中获取的不足采样的DWI数据中准确计算ADC映射。
translated by 谷歌翻译
Magnetic Resonance Fingerprinting (MRF) is an efficient quantitative MRI technique that can extract important tissue and system parameters such as T1, T2, B0, and B1 from a single scan. This property also makes it attractive for retrospectively synthesizing contrast-weighted images. In general, contrast-weighted images like T1-weighted, T2-weighted, etc., can be synthesized directly from parameter maps through spin-dynamics simulation (i.e., Bloch or Extended Phase Graph models). However, these approaches often exhibit artifacts due to imperfections in the mapping, the sequence modeling, and the data acquisition. Here we propose a supervised learning-based method that directly synthesizes contrast-weighted images from the MRF data without going through the quantitative mapping and spin-dynamics simulation. To implement our direct contrast synthesis (DCS) method, we deploy a conditional Generative Adversarial Network (GAN) framework and propose a multi-branch U-Net as the generator. The input MRF data are used to directly synthesize T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) images through supervised training on paired MRF and target spin echo-based contrast-weighted scans. In-vivo experiments demonstrate excellent image quality compared to simulation-based contrast synthesis and previous DCS methods, both visually as well as by quantitative metrics. We also demonstrate cases where our trained model is able to mitigate in-flow and spiral off-resonance artifacts that are typically seen in MRF reconstructions and thus more faithfully represent conventional spin echo-based contrast-weighted images.
translated by 谷歌翻译
扩散加权图像(DWIS)中的噪声降低了扩散张量磁共振成像(DTI)导出的微结构参数的准确性和精度,并导致延长的采集时间来实现改进的信噪比(SNR)。基于深度学习的图像去噪使用卷积神经网络(CNNS)具有卓越的性能,但通常需要额外的高SNR数据来监督CNN的培训,这降低了实际可行性。我们开发了一个自我监督的深度学习的方法,标题为“SDNDTI”,用于去噪DTI数据,这不需要额外的高SNR数据进行培训。具体地,SDNDTI将多向DTI数据划分为许多子集,每个子​​集中沿着沿着最佳选择的扩散编码方向组成的六个DWI卷,该编码方向是对张力配件的稳健,然后沿着拟合的扩散张量沿所有获取的方向合成DWI体积使用数据的每个子集作为CNN的输入数据。另一方面,SDNDTI沿着使用所有获取的数据作为训练目标的扩散张量,沿着获取的扩散编码方向合成DWI卷。 SDNDTI使用深3维CNN从合成的DWI卷中的每个子集中消除噪声,以匹配清洁器目标DWI卷的质量,通过平均所有去噪数据的所有子集实现更高的SNR。 SDNDTI的去噪功效在于人类连接项目(HCP)提供的两种数据集和衰老中的寿命HCP。 SDNDTI结果保留了图像清晰度和纹理细节,并大大改善了原始数据的影响。 SDNDTI的结果与来自最先进的传统去噪算法包括BM4D,AONLM和MPPCA的常规去噪算法的结果相当。
translated by 谷歌翻译
目的:大大缩短定量3D化学交换饱和转移(CEST)和半固体磁化转移(MT)成像所需的采集时间,并允许快速化学交换参数图重建。方法:三维CEST和MT磁共振指纹(MRF)数据集的L-精氨酸幻象,全脑,全脑和小腿肌肉的健康志愿者,癌症患者和心脏病患者是使用3T临床扫描仪在3T不同的位点使用3T临床扫描仪获得的3种不同的扫描仪模型和线圈。然后,设计和训练了一个生成的对抗网络监督框架(GAN-CEST),以学习从减少的输入数据空间到定量交换参数空间的映射,同时保留感知和定量内容。结果:GAN-CEST 3D采集时间为42-52秒,比CEST-MRF短70%。整个大脑的定量重建需要0.8秒。在地面真相和基于GAN的L-精氨酸浓度和pH值之间观察到了极好的一致性(Pearson的R> 0.97,NRMSE <1.5%)。来自脑肿瘤受试者的gan-cest图像产生的半固体量分数和汇率NRMSE为3.8 $ \ pm $ 1.3%和4.6 $ \ pm $ 1.3%,SSIM和96.3 $ \ pm $ \ pm $ 1.6%和95.0 $ \ pm $ 2.4%。半固体交换参数的NRMSE <7%和SSIM> 94%的小腿肌肉交换参数的映射。与MRF相比,在具有较大敏感性伪像的区域中,Gan-Cest表现出改善的性能和噪声降低。结论:Gan-Cest可以大大减少定量半固体MT/CEST映射的获取时间,同时即使在训练过程中无法使用的病理和扫描仪模型时,也可以保持性能。
translated by 谷歌翻译
在本文中,我们开发了一种高效的回顾性深度学习方法,称为堆叠U-网,具有自助前沿,解决MRI中刚性运动伪影的问题。拟议的工作利用损坏的图像本身使用额外的知识前瞻,而无需额外的对比度数据。所提出的网络通过共享来自相同失真对象的连续片的辅助信息来学习错过的结构细节。我们进一步设计了一种堆叠的U-网的细化,便于保持图像空间细节,从而提高了像素到像素依赖性。为了执行网络培训,MRI运动伪像的模拟是不可避免的。我们使用各种类型的图像前瞻呈现了一个密集的分析:来自同一主题的其他图像对比的提出的自助前锋和前锋。实验分析证明了自助前锋的有效性和可行性,因为它不需要任何进一步的数据扫描。
translated by 谷歌翻译
基于深度学习的脑磁共振成像(MRI)重建方法有可能加速MRI采集过程。尽管如此,科学界缺乏适当的基准,以评估高分辨率大脑图像的MRI重建质量,并评估这些所提出的算法在存在小而且预期的数据分布班次存在下的表现。多线圈磁共振图像(MC-MRI)重建挑战提供了一种基准,其目的在于使用高分辨率,三维,T1加权MRI扫描的大型数据集。挑战有两个主要目标:1)比较该数据集和2)上的不同的MRI重建模型,并评估这些模型的概括性,以通过不同数量的接收器线圈获取的数据。在本文中,我们描述了挑战实验设计,并总结了一系列基线和艺术脑MRI重建模型的结果。我们提供有关目前MRI重建最先进的相关比较信息,并突出挑战在更广泛的临床采用之前获得所需的普遍模型。 MC-MRI基准数据,评估代码和当前挑战排行榜可公开可用。它们为脑MRI重建领域的未来发展提供了客观性能评估。
translated by 谷歌翻译
磁共振成像(MRI)图像中的小病变对于多种疾病的临床诊断至关重要。但是,MRI质量很容易被各种噪声降解,这可以极大地影响小病变的诊断准确性。尽管已经提出了一些用于降级MR图像的方法,但缺乏提高特定于任务的降级方法来提高小病变的诊断信心。在这项工作中,我们建议通过体素杂种残留MLP-CNN模型来降低具有小病变的三维(3D)MR图像。我们结合了基本的深度学习体系结构MLP和CNN,以获得适当的固有偏差,以通过添加残差连接来利用远距离信息,以使图像降低并整合MLP和CNN中的每个输出层。我们在720 T2-Flair脑图像上评估了所提出的方法,其在不同的噪声水平下具有较小的病变。结果表明,与最先进的方法相比,在定量和视觉评估中,我们的方法在测试数据集上具有优势。此外,两名经验丰富的放射科医生同意,在中等和高噪声水平下,我们的方法在恢复小病变和整体图像质量方面优于其他方法。我们的方法的实现可在https://github.com/laowangbobo/Residual_MLP_CNN_MIXER上获得。
translated by 谷歌翻译
由于扩散张量成像(DTI)由于其独特的非侵入性评估心脏微观结构的能力而获得了心脏成像的流行,因此基于深度学习的人工智能正在成为减轻其一些缺点的重要工具,例如长期扫描时间。由于经常在快节奏的研究环境中发生,因此许多重点是展示深度学习的能力,而通常没有足够的时间来研究什么投入和建筑属性将使心脏DTI加速最大。在这项工作中,我们比较了几种输入类型(幅度图像与复杂图像),多个维度(2D vs 3D操作)以及多个输入类型(单片与多板)对训练训练的模型的性能的效果由同时的多层(SMS)采集引起的人工制品。尽管我们最初的直觉,但我们的实验表明,对于固定数量的参数,更简单的2D实价模型的表现优于其更高级的3D或复杂的对应物。最好的性能是,尽管使用获得的数据的幅度和相位组件训练了实现的模型。我们认为,这种行为是由于实现的模型可以更好地利用较低的参数,并且由于我们实验中使用的低SMS加速度因子,因此无法利用空间信息的3D模型无法利用空间信息。
translated by 谷歌翻译
从磁共振成像(MRI)数据(称为颅骨条状)中去除非脑信号是许多神经图像分析流的组成部分。尽管它们很丰富,但通常是针对具有特定采集特性的图像量身定制的,即近乎各向异性的分辨率和T1加权(T1W)MRI对比度,这些分辨率在研究环境中很普遍。结果,现有的工具倾向于适应其他图像类型,例如在诊所常见的快速旋转回声(FSE)MRI中获得的厚切片。尽管近年来基于学习的大脑提取方法已获得吸引力,但这些方法面临着类似的负担,因为它们仅对训练过程中看到的图像类型有效。为了在成像协议的景观中实现强大的颅骨缠身,我们引入了Synthstrip,这是一种快速,基于学习的脑萃取工具。通过利用解剖学分割来生成具有解剖学,强度分布和远远超过现实医学图像范围的完全合成训练数据集,Synthstrip学会了成功推广到各种真实获得的大脑图像,从而消除了使用训练数据的需求目标对比。我们证明了合成条的功效对受试者人群的各种图像采集和决议的功效,从新生儿到成人。我们显示出与流行的颅骨基线的准确性的实质性提高 - 所有这些基线都采用单个训练有素的模型。我们的方法和标记的评估数据可在https://w3id.org/synthstrip上获得。
translated by 谷歌翻译
目的:开发一种适用于具有非平滑相位变化的扩散加权(DW)图像的鲁棒部分傅里叶(PF)重建算法。方法:基于展开的近端分裂算法,导出了一种神经网络架构,其在经常复卷卷积实现的数据一致性操作和正则化之间交替。为了利用相关性,在考虑到置换方面,共同重建相同切片的多重重复。该算法在60名志愿者的DW肝脏数据上培训,并回顾性和预期的不同解剖和分辨率的次样本数据评估。结果:该方法能够在定量措施以及感知图像质量方面具有显着优异地优于追溯子采样数据的传统PF技术。在这种情况下,发现重复的联合重建以及特定类型的经常性网络展开展开是有益的重建质量。在预期的PF采样数据上,所提出的方法使得DW成像能够在不牺牲图像分辨率或引入额外的伪影的情况下进行DW成像。或者,它可以用来对抗具有更高分辨率的获取的TE增加。此外,可以向展示训练集中的解剖学和对比度显示普遍性的脑数据。结论:这项工作表明,即使在易于相位变化的解剖中的强力PF因子中,DW数据的强大PF重建也是可行的。由于所提出的方法不依赖于阶段的平滑度前沿,而是使用学习的经常性卷积,因此可以避免传统PF方法的伪像。
translated by 谷歌翻译
$ t_ {1 \ rho} $映射是一种有希望的定量MRI技术,用于对组织性质的非侵入性评估。基于学习的方法可以从减少数量的$ t_ {1 \ rho} $加权图像中映射$ t_ {1 \ rho} $,但需要大量的高质量培训数据。此外,现有方法不提供$ t_ {1 \ rho} $估计的置信度。为了解决这些问题,我们提出了一个自我监督的学习神经网络,该网络使用学习过程中的放松约束来学习$ t_ {1 \ rho} $映射。为$ t_ {1 \ rho} $量化网络建立了认知不确定性和态度不确定性,以提供$ t_ {1 \ rho} $映射的贝叶斯置信度估计。不确定性估计还可以使模型规范化,以防止其学习不完美的数据。我们对52例非酒精性脂肪肝病患者收集的$ T_ {1 \ rho} $数据进行了实验。结果表明,我们的方法优于$ t_ {1 \ rho} $量化肝脏的现有方法,使用少于两个$ t_ {1 \ rho} $加权图像。我们的不确定性估计提供了一种可行的方法,可以建模基于自我监督学习的$ t_ {1 \ rho} $估计的信心,这与肝脏中的现实$ t_ {1 \ rho} $成像是一致的。
translated by 谷歌翻译
可解释性和鲁棒性必须在临床应用中整合加速磁共振成像(MRI)重建的机器学习方法。这样做会允许快速高质量的解剖和病理学成像。数据一致性(DC)对于多模态数据的泛化至关重要,以及检测病理学的鲁棒性。这项工作提出了独立复发推理机(CIRIM)的级联,通过展开优化来评估DC,通过梯度下降,并通过设计的术语明确地明确。我们对CIRIM与其他展开的优化方法进行广泛的比较,是端到端变分网络(E2EVN)和轮辋,以及UNET和压缩感测(CS)。评估是分两个阶段完成的。首先,评估关于多次训练的MRI模型的学习,即用{t_1} $ - 加权和平凡对比,以及$ {t_2} $ - 加权膝盖数据。其次,在通过3D Flair MRI数据中重建依赖多发性硬化(MS)患者的3D Flair MRI数据来测试鲁棒性。结果表明,CIRIM在隐式强制执行DC时表现最佳,而E2EVN需要明确制定的DC。 CIRIM在重建临床MS数据时显示出最高病变对比度分辨率。与CS相比,性能提高了大约11%,而重建时间是二十次减少。
translated by 谷歌翻译
\ textit {objection:}基于gadolinium的对比剂(GBCA)已被广泛用于更好地可视化脑磁共振成像中的疾病(MRI)。然而,大脑和身体内部的gadolin量引起了人们对使用GBCA的安全问题。因此,在提供类似的对比度信息的同时,可以减少甚至消除GBCA暴露的新方法的发展将在临床上具有重大用途。 \ textit {方法:}在这项工作中,我们提出了一种基于深度学习的方法,用于对脑肿瘤患者的对比增强T1合成。 3D高分辨率完全卷积网络(FCN)通过处理和聚合并行的多尺度信息保持高分辨率信息,旨在将前对比度MRI序列映射到对比度增强的MRI序列。具体而言,将三个前对比的MRI序列T1,T2和表观扩散系数图(ADC)用作输入,而对比后T1序列则被用作目标输出。为了减轻正常组织与肿瘤区域之间的数据不平衡问题,我们引入了局部损失,以改善肿瘤区域的贡献,从而可以更好地增强对肿瘤的增强结果。 \ textIt {结果:}进行了广泛的定量和视觉评估,我们提出的模型在大脑中达到28.24db的PSNR,在肿瘤区域达到21.2db。 \ textit {结论和意义:}我们的结果表明,用深度学习产生的合成对比图像代替GBCA的潜力。代码可在\ url {https://github.com/chenchao666/contrast-enhanced-mri-synthesis中获得
translated by 谷歌翻译
Self-supervised image denoising techniques emerged as convenient methods that allow training denoising models without requiring ground-truth noise-free data. Existing methods usually optimize loss metrics that are calculated from multiple noisy realizations of similar images, e.g., from neighboring tomographic slices. However, those approaches fail to utilize the multiple contrasts that are routinely acquired in medical imaging modalities like MRI or dual-energy CT. In this work, we propose the new self-supervised training scheme Noise2Contrast that combines information from multiple measured image contrasts to train a denoising model. We stack denoising with domain-transfer operators to utilize the independent noise realizations of different image contrasts to derive a self-supervised loss. The trained denoising operator achieves convincing quantitative and qualitative results, outperforming state-of-the-art self-supervised methods by 4.7-11.0%/4.8-7.3% (PSNR/SSIM) on brain MRI data and by 43.6-50.5%/57.1-77.1% (PSNR/SSIM) on dual-energy CT X-ray microscopy data with respect to the noisy baseline. Our experiments on different real measured data sets indicate that Noise2Contrast training generalizes to other multi-contrast imaging modalities.
translated by 谷歌翻译
减少磁共振(MR)图像采集时间可能会使MR检查更容易获得。包括深度学习模型在内的先前艺术已致力于解决长期MRI成像时间的问题。最近,深层生成模型在算法鲁棒性和使用灵活性方面具有巨大的潜力。然而,无法直接学习或使用任何现有方案。此外,还值得研究的是,深层生成模型如何在混合域上很好地工作。在这项工作中,通过利用基于深度能量的模型,我们提出了一个K空间和图像域协作生成模型,以全面估算从采样量未采样的测量中的MR数据。与最先进的实验比较表明,所提出的混合方法的重建精度较小,在不同的加速因子下更稳定。
translated by 谷歌翻译
Low-field (LF) MRI scanners have the power to revolutionize medical imaging by providing a portable and cheaper alternative to high-field MRI scanners. However, such scanners are usually significantly noisier and lower quality than their high-field counterparts. The aim of this paper is to improve the SNR and overall image quality of low-field MRI scans to improve diagnostic capability. To address this issue, we propose a Nested U-Net neural network architecture super-resolution algorithm that outperforms previously suggested deep learning methods with an average PSNR of 78.83 and SSIM of 0.9551. We tested our network on artificial noisy downsampled synthetic data from a major T1 weighted MRI image dataset called the T1-mix dataset. One board-certified radiologist scored 25 images on the Likert scale (1-5) assessing overall image quality, anatomical structure, and diagnostic confidence across our architecture and other published works (SR DenseNet, Generator Block, SRCNN, etc.). We also introduce a new type of loss function called natural log mean squared error (NLMSE). In conclusion, we present a more accurate deep learning method for single image super-resolution applied to synthetic low-field MRI via a Nested U-Net architecture.
translated by 谷歌翻译
High Resolution (HR) medical images provide rich anatomical structure details to facilitate early and accurate diagnosis. In MRI, restricted by hardware capacity, scan time, and patient cooperation ability, isotropic 3D HR image acquisition typically requests long scan time and, results in small spatial coverage and low SNR. Recent studies showed that, with deep convolutional neural networks, isotropic HR MR images could be recovered from low-resolution (LR) input via single image super-resolution (SISR) algorithms. However, most existing SISR methods tend to approach a scale-specific projection between LR and HR images, thus these methods can only deal with a fixed up-sampling rate. For achieving different up-sampling rates, multiple SR networks have to be built up respectively, which is very time-consuming and resource-intensive. In this paper, we propose ArSSR, an Arbitrary Scale Super-Resolution approach for recovering 3D HR MR images. In the ArSSR model, the reconstruction of HR images with different up-scaling rates is defined as learning a continuous implicit voxel function from the observed LR images. Then the SR task is converted to represent the implicit voxel function via deep neural networks from a set of paired HR-LR training examples. The ArSSR model consists of an encoder network and a decoder network. Specifically, the convolutional encoder network is to extract feature maps from the LR input images and the fully-connected decoder network is to approximate the implicit voxel function. Due to the continuity of the learned function, a single ArSSR model can achieve arbitrary up-sampling rate reconstruction of HR images from any input LR image after training. Experimental results on three datasets show that the ArSSR model can achieve state-of-the-art SR performance for 3D HR MR image reconstruction while using a single trained model to achieve arbitrary up-sampling scales.
translated by 谷歌翻译
The data consistency for the physical forward model is crucial in inverse problems, especially in MR imaging reconstruction. The standard way is to unroll an iterative algorithm into a neural network with a forward model embedded. The forward model always changes in clinical practice, so the learning component's entanglement with the forward model makes the reconstruction hard to generalize. The proposed method is more generalizable for different MR acquisition settings by separating the forward model from the deep learning component. The deep learning-based proximal gradient descent was proposed to create a learned regularization term independent of the forward model. We applied the one-time trained regularization term to different MR acquisition settings to validate the proposed method and compared the reconstruction with the commonly used $\ell_1$ regularization. We showed ~3 dB improvement in the peak signal to noise ratio, compared with conventional $\ell_1$ regularized reconstruction. We demonstrated the flexibility of the proposed method in choosing different undersampling patterns. We also evaluated the effect of parameter tuning for the deep learning regularization.
translated by 谷歌翻译
MRI扫描时间减少通常通过并行成像方法实现,通常基于逆图像空间(A.K.A.K空间)的均匀下采样和具有多个接收器线圈的同时信号接收。 Grappa方法通过跨越所有线圈的相邻获取信号的线性组合来插入缺失的k空间信号,并且可以通过k空间中的卷积来描述。最近,介绍了一种称为RAKI的更广泛的方法。 Raki是一种深入学习方法,将Grappa推广到附加的卷积层,在此期间应用非线性激活功能。这使得卷积神经网络能够实现缺失信号的非线性估计。与Grappa类似,Raki中的卷积核心使用从自动校准信号(ACS)获得的特定训练样本进行培训。 Raki与Grappa相比提供了卓越的重建质量,然而,由于其未知参数的数量增加,通常需要更多的AC。为了克服这一限制,本研究调查了训练数据对标准2D成像重建质量的影响,特别关注其金额和对比信息。此外,评估迭代k空间插值方法(araki),包括通过初始的格拉普重建训练数据增强,并通过迭代培训改进卷积滤波器。仅使用18,20和25个ACS线(8%),通过抑制在加速度因子R = 4和r = 5时发生的残余人工制品,并且与Grappa相比,通过定量质量指标加下划线,产生强烈的噪声抑制。与相约束的组合进一步改善。此外,在预扫描校准的情况下,伊拉克基显示比GRAPPA和RAKI更好的性能,并且在训练和缺乏采样的数据之间强烈不同的对比度。
translated by 谷歌翻译