磁共振成像(MRI)图像中的小病变对于多种疾病的临床诊断至关重要。但是,MRI质量很容易被各种噪声降解,这可以极大地影响小病变的诊断准确性。尽管已经提出了一些用于降级MR图像的方法,但缺乏提高特定于任务的降级方法来提高小病变的诊断信心。在这项工作中,我们建议通过体素杂种残留MLP-CNN模型来降低具有小病变的三维(3D)MR图像。我们结合了基本的深度学习体系结构MLP和CNN,以获得适当的固有偏差,以通过添加残差连接来利用远距离信息,以使图像降低并整合MLP和CNN中的每个输出层。我们在720 T2-Flair脑图像上评估了所提出的方法,其在不同的噪声水平下具有较小的病变。结果表明,与最先进的方法相比,在定量和视觉评估中,我们的方法在测试数据集上具有优势。此外,两名经验丰富的放射科医生同意,在中等和高噪声水平下,我们的方法在恢复小病变和整体图像质量方面优于其他方法。我们的方法的实现可在https://github.com/laowangbobo/Residual_MLP_CNN_MIXER上获得。
translated by 谷歌翻译
由于组织和骨骼之间的相似性,在人解剖结构中广泛看到了全球相关性。由于近距离质子密度和T1/T2参数,这些相关性反映在磁共振成像(MRI)扫描中。此外,为了实现加速的MRI,k空间数据的采样不足,从而导致全球混叠伪像。卷积神经网络(CNN)模型被广泛用于加速MRI重建,但是由于卷积操作的固有位置,这些模型在捕获全球相关性方面受到限制。基于自发的变压器模型能够捕获图像特征之间的全局相关性,但是,变压器模型对MRI重建的当前贡献是微小的。现有的贡献主要提供CNN转换器混合解决方案,并且很少利用MRI的物理学。在本文中,我们提出了一种基于物理的独立(无卷积)变压器模型,标题为“多头级联SWIN变压器(MCSTRA),用于加速MRI重建。 MCSTRA将几种相互关联的MRI物理相关概念与变压器网络相结合:它通过移动的窗口自我发场机制利用了全局MR特征;它使用多头设置分别提取属于不同光谱组件的MR特征;它通过级联的网络在中间脱氧和K空间校正之间进行迭代,该网络具有K空间和中间损耗计算中的数据一致性;此外,我们提出了一种新型的位置嵌入生成机制,以使用对应于底面采样掩码的点扩散函数来指导自我发作。我们的模型在视觉上和定量上都大大优于最先进的MRI重建方法,同时描述了改善的分辨率和去除词法。
translated by 谷歌翻译
High Resolution (HR) medical images provide rich anatomical structure details to facilitate early and accurate diagnosis. In MRI, restricted by hardware capacity, scan time, and patient cooperation ability, isotropic 3D HR image acquisition typically requests long scan time and, results in small spatial coverage and low SNR. Recent studies showed that, with deep convolutional neural networks, isotropic HR MR images could be recovered from low-resolution (LR) input via single image super-resolution (SISR) algorithms. However, most existing SISR methods tend to approach a scale-specific projection between LR and HR images, thus these methods can only deal with a fixed up-sampling rate. For achieving different up-sampling rates, multiple SR networks have to be built up respectively, which is very time-consuming and resource-intensive. In this paper, we propose ArSSR, an Arbitrary Scale Super-Resolution approach for recovering 3D HR MR images. In the ArSSR model, the reconstruction of HR images with different up-scaling rates is defined as learning a continuous implicit voxel function from the observed LR images. Then the SR task is converted to represent the implicit voxel function via deep neural networks from a set of paired HR-LR training examples. The ArSSR model consists of an encoder network and a decoder network. Specifically, the convolutional encoder network is to extract feature maps from the LR input images and the fully-connected decoder network is to approximate the implicit voxel function. Due to the continuity of the learned function, a single ArSSR model can achieve arbitrary up-sampling rate reconstruction of HR images from any input LR image after training. Experimental results on three datasets show that the ArSSR model can achieve state-of-the-art SR performance for 3D HR MR image reconstruction while using a single trained model to achieve arbitrary up-sampling scales.
translated by 谷歌翻译
目的:多发性硬化症(MS)是一种自身免疫和脱髓鞘疾病,导致中枢神经系统的病变。可以使用磁共振成像(MRI)跟踪和诊断该疾病。到目前为止,多数多层自动生物医学方法用于在成本,时间和可用性方面对患者没有有益的病变。本文的作者提出了一种使用只有一个模态(Flair Image)的方法,准确地将MS病变分段。方法:由3D-Reset和空间通道注意模块进行设计,灵活的基于补丁的卷积神经网络(CNN),以段MS病变。该方法由三个阶段组成:(1)对比度限制自适应直方图均衡(CLAHE)被施加到原始图像并连接到提取的边缘以形成4D图像; (2)尺寸80 * 80 * 80 * 2的贴片从4D图像中随机选择; (3)将提取的贴片传递到用于分割病变的关注的CNN中。最后,将所提出的方法与先前的相同数据集进行比较。结果:目前的研究评估了模型,具有测试集的ISIB挑战数据。实验结果表明,该方法在骰子相似性和绝对体积差方面显着超越了现有方法,而该方法仅使用一种模态(Flair)来分割病变。结论:作者推出了一种自动化的方法来分割基于最多两种方式作为输入的损伤。所提出的架构由卷积,解卷积和SCA-VOXRES模块作为注意模块组成。结果表明,所提出的方法优于与其他方法相比良好。
translated by 谷歌翻译
在本文中,我们开发了一种高效的回顾性深度学习方法,称为堆叠U-网,具有自助前沿,解决MRI中刚性运动伪影的问题。拟议的工作利用损坏的图像本身使用额外的知识前瞻,而无需额外的对比度数据。所提出的网络通过共享来自相同失真对象的连续片的辅助信息来学习错过的结构细节。我们进一步设计了一种堆叠的U-网的细化,便于保持图像空间细节,从而提高了像素到像素依赖性。为了执行网络培训,MRI运动伪像的模拟是不可避免的。我们使用各种类型的图像前瞻呈现了一个密集的分析:来自同一主题的其他图像对比的提出的自助前锋和前锋。实验分析证明了自助前锋的有效性和可行性,因为它不需要任何进一步的数据扫描。
translated by 谷歌翻译
目的:并行成像通过用一系列接收器线圈获取其他灵敏度信息,从而加速了磁共振成像(MRI)数据,从而降低了相位编码步骤。压缩传感磁共振成像(CS-MRI)在医学成像领域中获得了普及,因为其数据要求较少,而不是平行成像。并行成像和压缩传感(CS)均通过最大程度地减少K空间中捕获的数据量来加快传统MRI获取。由于采集时间与样品的数量成反比,因此从缩短的K空间样品中的图像的反向形成会导致收购更快,但具有混乱的伪像。本文提出了一种新型的生成对抗网络(GAN),即雷德格尔(Recgan-gr)受到多模式损失的监督,以消除重建的图像。方法:与现有的GAN网络相反,我们提出的方法引入了一种新型的发电机网络,即与双域损耗函数集成的弹药网络,包括加权幅度和相位损耗函数以及基于平行成像的损失,即Grappa一致性损失。提出了K空间校正块,以使GAN网络自动化生成不必要的数据,从而使重建过程的收敛性更快。结果:全面的结果表明,拟议的Recgan-GR在基于GAN的方法中的PSNR有4 dB的改善,并且在文献中可用的传统最先进的CNN方法中有2 dB的改进。结论和意义:拟议的工作有助于显着改善低保留数据的图像质量,从而更快地获取了5倍或10倍。
translated by 谷歌翻译
使用卷积神经网络(CNN)的最先进的磁共振(MR)图像超分辨率方法(ISR)由于CNN的空间覆盖率有限,因此在有限的上下文信息中利用有限的上下文信息。Vision Transformers(VIT)学习更好的全球环境,这有助于产生优质的HR图像。我们将CNN的本地信息和来自VIT的全局信息结合在一起,以获得图像超级分辨率和输出超级分辨率的图像,这些图像的质量比最先进的方法所产生的质量更高。我们通过多个新颖的损失函数包括额外的约束,这些损失功能将结构和纹理信息从低分辨率到高分辨率图像。
translated by 谷歌翻译
磁共振图像的降解有益于提高低信噪比图像的质量。最近,使用深层神经网络进行DENOSING表现出了令人鼓舞的结果。但是,这些网络大多数都利用监督学习,这需要大量的噪声和清洁图像对的培训图像。获得训练图像,尤其是干净的图像,既昂贵又耗时。因此,已经开发了仅需要成对噪声浪费图像的噪声2Noise(N2N)之类的方法来减轻获得训练数据集的负担。在这项研究中,我们提出了一种新的自我监督的denoising方法Coil2Coil(C2C),该方法不需要获取干净的图像或配对的噪声浪费图像进行训练。取而代之的是,该方法利用了从分阶段阵列线圈中的多通道数据来生成训练图像。首先,它将多通道线圈图像分为两个图像,一个用于输入,另一个用于标签。然后,它们被处理以施加噪声独立性和敏感性归一化,以便它们可用于N2N的训练图像。为了推断,该方法输入了一个线圈组合的图像(例如DICOM图像),从而允许该方法的广泛应用。当使用合成噪声添加的图像进行评估时,C2C对几种自我监督方法显示了最佳性能,从而报告了与监督方法的可比结果。在测试DICOM图像时,C2C成功地将真实噪声降低,而没有显示误差图中的结构依赖性残差。由于不需要对清洁或配对图像进行额外扫描的显着优势,因此可以轻松地用于各种临床应用。
translated by 谷歌翻译
在临床医学中,磁共振成像(MRI)是诊断,分类,预后和治疗计划中最重要的工具之一。然而,MRI遭受了固有的慢数据采集过程,因为数据在k空间中顺序收集。近年来,大多数MRI重建方法在文献中侧重于整体图像重建而不是增强边缘信息。这项工作通过详细说明了对边缘信息的提高来阐述了这一趋势。具体地,我们通过结合多视图信息介绍一种用于快速多通道MRI重建的新型并行成像耦合双鉴别器生成的对抗网络(PIDD-GaN)。双判别设计旨在改善MRI重建中的边缘信息。一个鉴别器用于整体图像重建,而另一个鉴别器是负责增强边缘信息的负责。为发电机提出了一种具有本地和全局剩余学习的改进的U-Net。频率通道注意块(FCA块)嵌入在发电机中以结合注意力机制。引入内容损耗以培训发电机以获得更好的重建质量。我们对Calgary-Campinas公共大脑MR DataSet进行了全面的实验,并将我们的方法与最先进的MRI重建方法进行了比较。在MICCAI13数据集上进行了对剩余学习的消融研究,以验证所提出的模块。结果表明,我们的PIDD-GaN提供高质量的重建MR图像,具有良好的边缘信息。单图像重建的时间低于5ms,符合加快处理的需求。
translated by 谷歌翻译
具有高分辨率(HR)的磁共振成像(MRI)提供了更详细的信息,以进行准确的诊断和定量图像分析。尽管取得了重大进展,但大多数现有的医学图像重建网络都有两个缺陷:1)所有这些缺陷都是在黑盒原理中设计的,因此缺乏足够的解释性并进一步限制其实际应用。可解释的神经网络模型引起了重大兴趣,因为它们在处理医学图像时增强了临床实践所需的可信赖性。 2)大多数现有的SR重建方法仅使用单个对比度或使用简单的多对比度融合机制,从而忽略了对SR改进至关重要的不同对比度之间的复杂关系。为了解决这些问题,在本文中,提出了一种新颖的模型引导的可解释的深层展开网络(MGDUN),用于医学图像SR重建。模型引导的图像SR重建方法求解手动设计的目标函数以重建HR MRI。我们通过将MRI观察矩阵和显式多对比度关系矩阵考虑到末端到端优化期间,将迭代的MGDUN算法展示为新型模型引导的深层展开网络。多对比度IXI数据集和Brats 2019数据集进行了广泛的实验,证明了我们提出的模型的优势。
translated by 谷歌翻译
作为混合成像技术,光声显微镜(PAM)成像由于激光强度的最大允许暴露,组织中超声波的衰减以及换能器的固有噪声而受到噪声。去噪是降低噪声的后处理方法,并且可以恢复PAM图像质量。然而,之前的去噪技术通常严重依赖于数学前导者以及手动选择的参数,导致对不同噪声图像的不令人满意和慢的去噪能,这极大地阻碍了实用和临床应用。在这项工作中,我们提出了一种基于深度学习的方法,可以从PAM图像中除去复杂的噪声,没有数学前导者,并手动选择不同输入图像的设置。注意增强的生成对抗性网络用于提取图像特征并去除各种噪声。在合成和实际数据集上证明了所提出的方法,包括幻影(叶静脉)和体内(小鼠耳血管和斑马鱼颜料)实验。结果表明,与先前的PAM去噪方法相比,我们的方法在定性和定量上恢复图像时表现出良好的性能。此外,为256次\ times256 $像素的图像实现了0.016 s的去噪速度。我们的方法对于PAM图像的去噪有效和实用。
translated by 谷歌翻译
具有高分辨率的视网膜光学相干断层扫描术(八八)对于视网膜脉管系统的定量和分析很重要。然而,八颗图像的分辨率与相同采样频率的视野成反比,这不利于临床医生分析较大的血管区域。在本文中,我们提出了一个新型的基于稀疏的域适应超分辨率网络(SASR),以重建现实的6x6 mm2/低分辨率/低分辨率(LR)八八粒图像,以重建高分辨率(HR)表示。更具体地说,我们首先对3x3 mm2/高分辨率(HR)图像进行简单降解,以获得合成的LR图像。然后,采用一种有效的注册方法在6x6 mm2图像中以其相应的3x3 mm2图像区域注册合成LR,以获得裁切的逼真的LR图像。然后,我们提出了一个多级超分辨率模型,用于对合成数据进行全面监督的重建,从而通过生成的对流策略指导现实的LR图像重建现实的LR图像,该策略允许合成和现实的LR图像可以在特征中统一。领域。最后,新型的稀疏边缘感知损失旨在动态优化容器边缘结构。在两个八八集中进行的广泛实验表明,我们的方法的性能优于最先进的超分辨率重建方法。此外,我们还研究了重建结果对视网膜结构分割的性能,这进一步验证了我们方法的有效性。
translated by 谷歌翻译
最近,卷积神经网络(CNN)已被广泛用于图像DeNoising。现有方法受益于剩余学习并获得高性能。许多研究都注意到优化CNN的网络体系结构,但忽略了残留学习的局限性。本文提出了两个局限性。一个是残留学习的重点是估计噪声,从而忽略图像信息。另一个是图像自相似性没有被有效考虑。本文提出了一个组成剥落网络(CDN),其图像信息路径(IIP)和噪声估计路径(NEP)将分别解决这两个问题。 IIP通过图像到图像的方法来培训图像信息。对于NEP,它从训练的角度利用了图像自相似性。这种基于相似性的训练方法将NEP限制为输出具有特定类型噪声的不同图像贴片的相似估计噪声分布。最后,将全面考虑图像信息和噪声分布信息,以进行图像denoising。实验表明,CDN达到最新的结果会导致合成和现实世界图像降解。我们的代码将在https://github.com/jiahongz/cdn上发布。
translated by 谷歌翻译
多发性硬化症(MS)是中枢神经系统的慢性炎症和退行性疾病,其特征在于,白色和灰质的外观与个体患者的神经症状和标志进行地平整相关。磁共振成像(MRI)提供了详细的体内结构信息,允许定量和分类MS病变,其批判性地通知疾病管理。传统上,MS病变在2D MRI切片上手动注释,一个流程效率低,易于观察室内误差。最近,已经提出了自动统计成像分析技术以基于MRI体素强度检测和分段段病变。然而,它们的有效性受到MRI数据采集技术的异质性和MS病变的外观的限制。通过直接从图像学习复杂的病变表现,深度学习技术已经在MS病变分割任务中取得了显着的突破。在这里,我们提供了全面审查最先进的自动统计和深度学习MS分段方法,并讨论当前和未来的临床应用。此外,我们审查了域适应等技术策略,以增强现实世界临床环境中的MS病变分段。
translated by 谷歌翻译
图像去噪是许多领域下游任务的先决条件。低剂量和光子计数计算断层扫描(CT)去噪可以在最小化辐射剂量下优化诊断性能。监督深层去噪方法是流行的,但需要成对的清洁或嘈杂的样本通常在实践中不可用。受独立噪声假设的限制,电流无监督的去噪方法不能处理与CT图像中的相关噪声。在这里,我们提出了一种基于类似的类似性的无人监督的无监督的深度去噪方法,称为Coxing2Sim,以非局部和非线性方式起作用,不仅抑制独立而且还具有相关的噪音。从理论上讲,噪声2SIM在温和条件下渐近相当于监督学习方法。通过实验,Nosie2SIM从嘈杂的低剂量CT和光子计数CT图像中的内在特征,从视觉上,定量和统计上有效地或甚至优于实际数据集的监督学习方法。 Coke2Sim是一般无监督的去噪方法,在不同的应用中具有很大的潜力。
translated by 谷歌翻译
基于卷积神经网络的MR重建方法已经显示出提供快速和高质量的重建。具有基于CNN的模型的主要缺点是它缺乏灵活性,并且可以仅针对特定采集上下文限制实际适用性有效运行。通过获取上下文,我们的意思是三个输入设置的特定组合,即所认为的三种输入,在研究中的解剖学,欠采样掩模图案和欠采样的加速度。该模型可以在组合多个上下文的图像上共同培训。然而,该模型不符合上下文特定模型的性能,也不符合在火车时间内看不见的上下文。这需要在生成上下文特定权重时修改现有体系结构,以便将灵活性合并到多个上下文。我们提出了一个多次采集的上下文基础网络,称为MAC-Recordnet,用于MRI重建,灵活地到多个获取上下文,并更广泛地概括为在实际方案中适用性的未操作性上下文。所提出的网络具有MRI重建模块和动态重量预测(DWP)模块。 DWP模块将相应的获取上下文信息作为输入,并学习重建模块的上下文专用权重,在运行时使用上下文动态变化。我们表明,所提出的方法可以根据心脏和大脑数据集,高斯和笛卡尔欠采样模式和五个加速因子处理多个上下文。所提出的网络优于Naive联合训练的模型,并通过定量和定性地具有与上下文专用模型具有竞争力的结果。我们还通过在火车时间看不见的背景下测试了我们模型的普遍性。
translated by 谷歌翻译
磁共振成像(MRI)是一种重要的非侵入性临床工具,可以产生高分辨率和可重复的图像。然而,高质量的MR图像需要长时间的扫描时间,这导致患者的疲惫和不适,由于患者的自愿运动和非自愿的生理运动,诱导更多人工制品。为了加速扫描过程,通过K空间欠采样和基于深度学习的重建的方法已经推广。这项工作引进了SwinMR,这是一种基于新型的Swin变压器的快速MRI重建方法。整个网络由输入模块(IM)组成,特征提取模块(FEM)和输出模块(OM)。 IM和OM是2D卷积层,并且FEM由级联的残留的Swin变压器块(RSTBS)和2D卷积层组成。 RSTB由一系列SWIN变压器层(STL)组成。 STL的Shifted Windows多头自我关注(W-MSA / SW-MSA)在移位的窗口中执行,而不是整个图像空间中原始变压器的多头自我关注(MSA)。通过使用灵敏度图提出了一种新的多通道损耗,这被证明是为了保留更多纹理和细节。我们在Calgary-Campinas公共大脑MR DataSet中进行了一系列比较研究和消融研究,并在多模态脑肿瘤细分挑战2017年数据集中进行了下游分段实验。结果表明,与其他基准方法相比,我们的SwinMR实现了高质量的重建,并且它在噪音中断和不同的数据集中显示了不同的遮光罩掩模的稳健性。该代码在https://github.com/ayanglab/swinmr公开使用。
translated by 谷歌翻译
目的:动脉自旋标记(ASL)灌注成像表示脑血流(CBF)的直接和绝对测量。动脉转运时间(ATT)是一个相关的生理参数,反映了标记的旋转到达感兴趣的大脑区域的持续时间。多个标签后延迟(PLD)可以提供CBF和ATT的强大度量,从而可以根据ATT优化区域CBF建模。延长的获取时间可以潜在地降低CBF和ATT估计的质量和准确性。我们提出了一个新型网络,以显着减少具有较高信噪比(SNR)的PLD数量。方法:对一个PLD和两个PLD SEPA-列表进行了CBF和ATT估计。对每个模型进行独立训练,以学习从灌注加权图像(PWI)到CBF和ATT图像的非线性转换。结果:One-PLD和两个PLD模型在CBF上的视觉上优于常规方法,而两PLD模型在ATT估计上显示出更准确的结构。所提出的方法将PLD的数量从ATT上的6个降低到2,甚至在CBF上的单个PLD中,而无需牺牲SNR。结论:使用高质量的深度学习生成CBF和ATT地图可行。
translated by 谷歌翻译
\ textit {objection:}基于gadolinium的对比剂(GBCA)已被广泛用于更好地可视化脑磁共振成像中的疾病(MRI)。然而,大脑和身体内部的gadolin量引起了人们对使用GBCA的安全问题。因此,在提供类似的对比度信息的同时,可以减少甚至消除GBCA暴露的新方法的发展将在临床上具有重大用途。 \ textit {方法:}在这项工作中,我们提出了一种基于深度学习的方法,用于对脑肿瘤患者的对比增强T1合成。 3D高分辨率完全卷积网络(FCN)通过处理和聚合并行的多尺度信息保持高分辨率信息,旨在将前对比度MRI序列映射到对比度增强的MRI序列。具体而言,将三个前对比的MRI序列T1,T2和表观扩散系数图(ADC)用作输入,而对比后T1序列则被用作目标输出。为了减轻正常组织与肿瘤区域之间的数据不平衡问题,我们引入了局部损失,以改善肿瘤区域的贡献,从而可以更好地增强对肿瘤的增强结果。 \ textIt {结果:}进行了广泛的定量和视觉评估,我们提出的模型在大脑中达到28.24db的PSNR,在肿瘤区域达到21.2db。 \ textit {结论和意义:}我们的结果表明,用深度学习产生的合成对比图像代替GBCA的潜力。代码可在\ url {https://github.com/chenchao666/contrast-enhanced-mri-synthesis中获得
translated by 谷歌翻译
Self-supervised image denoising techniques emerged as convenient methods that allow training denoising models without requiring ground-truth noise-free data. Existing methods usually optimize loss metrics that are calculated from multiple noisy realizations of similar images, e.g., from neighboring tomographic slices. However, those approaches fail to utilize the multiple contrasts that are routinely acquired in medical imaging modalities like MRI or dual-energy CT. In this work, we propose the new self-supervised training scheme Noise2Contrast that combines information from multiple measured image contrasts to train a denoising model. We stack denoising with domain-transfer operators to utilize the independent noise realizations of different image contrasts to derive a self-supervised loss. The trained denoising operator achieves convincing quantitative and qualitative results, outperforming state-of-the-art self-supervised methods by 4.7-11.0%/4.8-7.3% (PSNR/SSIM) on brain MRI data and by 43.6-50.5%/57.1-77.1% (PSNR/SSIM) on dual-energy CT X-ray microscopy data with respect to the noisy baseline. Our experiments on different real measured data sets indicate that Noise2Contrast training generalizes to other multi-contrast imaging modalities.
translated by 谷歌翻译