目的:加速径向采样的扩散加权自旋回波(RAD-DW-SE)采集方法,以生成高质量的表观扩散系数(ADC)地图。方法:开发了一种深度学习方法,以从用RAD-DW-SE方法获取的未采样的DWI数据生成准确的ADC映射重建。深度学习方法将卷积神经网络(CNN)与Vison变形金刚集成在一起,以生成从无效的DWI数据中生成高质量的ADC图,该数据由单指数ADC模型拟合项正常化。对147只小鼠的DWI数据进行了培训,并对36只小鼠的DWI数据进行了评估,其采样率为4倍和8倍。结果:消融研究和实验结果表明,所提出的深度学习模型可以从不足采样的DWI数据中生成高质量的ADC图,比在比较的替代深度学习方法中,其性能在不同级别的图像,肿瘤,肾脏和牙齿上进行了量化。肌肉。结论:具有集成CNN和变形金刚的深度学习方法提供了一种有效的手段,可以从使用RAD-DW-SE方法中获取的不足采样的DWI数据中准确计算ADC映射。
translated by 谷歌翻译
由于组织和骨骼之间的相似性,在人解剖结构中广泛看到了全球相关性。由于近距离质子密度和T1/T2参数,这些相关性反映在磁共振成像(MRI)扫描中。此外,为了实现加速的MRI,k空间数据的采样不足,从而导致全球混叠伪像。卷积神经网络(CNN)模型被广泛用于加速MRI重建,但是由于卷积操作的固有位置,这些模型在捕获全球相关性方面受到限制。基于自发的变压器模型能够捕获图像特征之间的全局相关性,但是,变压器模型对MRI重建的当前贡献是微小的。现有的贡献主要提供CNN转换器混合解决方案,并且很少利用MRI的物理学。在本文中,我们提出了一种基于物理的独立(无卷积)变压器模型,标题为“多头级联SWIN变压器(MCSTRA),用于加速MRI重建。 MCSTRA将几种相互关联的MRI物理相关概念与变压器网络相结合:它通过移动的窗口自我发场机制利用了全局MR特征;它使用多头设置分别提取属于不同光谱组件的MR特征;它通过级联的网络在中间脱氧和K空间校正之间进行迭代,该网络具有K空间和中间损耗计算中的数据一致性;此外,我们提出了一种新型的位置嵌入生成机制,以使用对应于底面采样掩码的点扩散函数来指导自我发作。我们的模型在视觉上和定量上都大大优于最先进的MRI重建方法,同时描述了改善的分辨率和去除词法。
translated by 谷歌翻译
目的:开发一种适用于具有非平滑相位变化的扩散加权(DW)图像的鲁棒部分傅里叶(PF)重建算法。方法:基于展开的近端分裂算法,导出了一种神经网络架构,其在经常复卷卷积实现的数据一致性操作和正则化之间交替。为了利用相关性,在考虑到置换方面,共同重建相同切片的多重重复。该算法在60名志愿者的DW肝脏数据上培训,并回顾性和预期的不同解剖和分辨率的次样本数据评估。结果:该方法能够在定量措施以及感知图像质量方面具有显着优异地优于追溯子采样数据的传统PF技术。在这种情况下,发现重复的联合重建以及特定类型的经常性网络展开展开是有益的重建质量。在预期的PF采样数据上,所提出的方法使得DW成像能够在不牺牲图像分辨率或引入额外的伪影的情况下进行DW成像。或者,它可以用来对抗具有更高分辨率的获取的TE增加。此外,可以向展示训练集中的解剖学和对比度显示普遍性的脑数据。结论:这项工作表明,即使在易于相位变化的解剖中的强力PF因子中,DW数据的强大PF重建也是可行的。由于所提出的方法不依赖于阶段的平滑度前沿,而是使用学习的经常性卷积,因此可以避免传统PF方法的伪像。
translated by 谷歌翻译
目的:提出一种新的基于深度学习的方法,称为RG-NET(重建和生成网络),用于通过向下采样k空间高度加速的MR参数映射,并同时减少所获取的对比度。方法:所提出的框架包括重建模块和生成模块。在先前的帮助下,重建模块从所获取的少数下采样的k空间数据重建MR图像。然后,生成模块从重建的图像中综合剩余的多对比度图像,其中通过对完全采样标签的监督隐式模型被隐式地结合到图像生成中。在不同的加速率下对膝关节和大脑的映射数据进行评估RG-Net。 Cartilage和大脑的区域T1 \ R {HO}进行了分析,以获得RG-Net的性能。结果:RG-Net以高速加速度为17的高质量T1 \ R {Ho}地图。与仅借出k空间的竞争方法相比,我们的框架在T1 \ R {Ho}值中实现了更好的性能分析。我们的方法还提高了胶质瘤患者T1 \ R {Ho}的质量。结论:提出的RG-NET通过欠采样k空间采用新策略并同时减少快速先生参数映射的对比度,可以实现高加速率,同时保持良好的重建质量。我们的框架的生成模块也可以用作其他快速MR参数映射方法的插入模块。关键词:深度学习,卷积神经网络,快速先生参数映射
translated by 谷歌翻译
目的:动脉自旋标记(ASL)灌注成像表示脑血流(CBF)的直接和绝对测量。动脉转运时间(ATT)是一个相关的生理参数,反映了标记的旋转到达感兴趣的大脑区域的持续时间。多个标签后延迟(PLD)可以提供CBF和ATT的强大度量,从而可以根据ATT优化区域CBF建模。延长的获取时间可以潜在地降低CBF和ATT估计的质量和准确性。我们提出了一个新型网络,以显着减少具有较高信噪比(SNR)的PLD数量。方法:对一个PLD和两个PLD SEPA-列表进行了CBF和ATT估计。对每个模型进行独立训练,以学习从灌注加权图像(PWI)到CBF和ATT图像的非线性转换。结果:One-PLD和两个PLD模型在CBF上的视觉上优于常规方法,而两PLD模型在ATT估计上显示出更准确的结构。所提出的方法将PLD的数量从ATT上的6个降低到2,甚至在CBF上的单个PLD中,而无需牺牲SNR。结论:使用高质量的深度学习生成CBF和ATT地图可行。
translated by 谷歌翻译
Magnetic Resonance Fingerprinting (MRF) is an efficient quantitative MRI technique that can extract important tissue and system parameters such as T1, T2, B0, and B1 from a single scan. This property also makes it attractive for retrospectively synthesizing contrast-weighted images. In general, contrast-weighted images like T1-weighted, T2-weighted, etc., can be synthesized directly from parameter maps through spin-dynamics simulation (i.e., Bloch or Extended Phase Graph models). However, these approaches often exhibit artifacts due to imperfections in the mapping, the sequence modeling, and the data acquisition. Here we propose a supervised learning-based method that directly synthesizes contrast-weighted images from the MRF data without going through the quantitative mapping and spin-dynamics simulation. To implement our direct contrast synthesis (DCS) method, we deploy a conditional Generative Adversarial Network (GAN) framework and propose a multi-branch U-Net as the generator. The input MRF data are used to directly synthesize T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) images through supervised training on paired MRF and target spin echo-based contrast-weighted scans. In-vivo experiments demonstrate excellent image quality compared to simulation-based contrast synthesis and previous DCS methods, both visually as well as by quantitative metrics. We also demonstrate cases where our trained model is able to mitigate in-flow and spiral off-resonance artifacts that are typically seen in MRF reconstructions and thus more faithfully represent conventional spin echo-based contrast-weighted images.
translated by 谷歌翻译
基于深度学习的脑磁共振成像(MRI)重建方法有可能加速MRI采集过程。尽管如此,科学界缺乏适当的基准,以评估高分辨率大脑图像的MRI重建质量,并评估这些所提出的算法在存在小而且预期的数据分布班次存在下的表现。多线圈磁共振图像(MC-MRI)重建挑战提供了一种基准,其目的在于使用高分辨率,三维,T1加权MRI扫描的大型数据集。挑战有两个主要目标:1)比较该数据集和2)上的不同的MRI重建模型,并评估这些模型的概括性,以通过不同数量的接收器线圈获取的数据。在本文中,我们描述了挑战实验设计,并总结了一系列基线和艺术脑MRI重建模型的结果。我们提供有关目前MRI重建最先进的相关比较信息,并突出挑战在更广泛的临床采用之前获得所需的普遍模型。 MC-MRI基准数据,评估代码和当前挑战排行榜可公开可用。它们为脑MRI重建领域的未来发展提供了客观性能评估。
translated by 谷歌翻译
缩短采集时间和减少动作伪影是磁共振成像中最重要的两个问题。作为一个有前途的解决方案,已经研究了基于深度学习的高质量MR图像恢复,以产生从缩短采集时间获取的较低分辨率图像的更高分辨率和自由运动伪影图像,而不降低额外的获取时间或修改脉冲序列。然而,仍有许多问题仍然存在,以防止深度学习方法在临床环境中变得实用。具体而言,大多数先前的作品专注于网络模型,但忽略了各种下采样策略对采集时间的影响。此外,长推理时间和高GPU消耗也是瓶颈,以便在诊所部署大部分产品。此外,先验研究采用回顾性运动伪像产生随机运动,导致运动伪影的无法控制的严重程度。更重要的是,医生不确定生成的MR图像是否值得信赖,使诊断困难。为了克服所有这些问题,我们雇用了一个统一的2D深度学习神经网络,用于3D MRI超级分辨率和运动伪影,展示这种框架可以在3D MRI恢复任务中实现更好的性能与最艺术方法的其他状态,并且仍然存在GPU消耗和推理时间明显低,从而更易于部署。我们还基于加速度分析了几种下式采样策略,包括在平面内和穿过平面下采样的多种组合,并开发了一种可控和可量化的运动伪影生成方法。最后,计算并用于估计生成图像的准确性的像素 - 明智的不确定性,提供可靠诊断的附加信息。
translated by 谷歌翻译
本文考虑了快速MRI重建的问题。我们提出了一个基于变压器的新型框架,用于直接处理K空间中稀疏采样的信号,超出了像Convnets一样的常规网格的限制。我们采用频谱图的隐式表示,将空间坐标视为输入,并动态查询部分观察到的测量值以完成频谱图,即学习K空间中的电感偏置。为了在计算成本和重建质量之间保持平衡,我们分别建立了一个具有低分辨率和高分辨率解码器的层次结构。为了验证我们提出的模块的必要性,我们在两个公共数据集上进行了广泛的实验,并表现出优于最先进方法的卓越或可比性。
translated by 谷歌翻译
扩散加权图像(DWIS)中的噪声降低了扩散张量磁共振成像(DTI)导出的微结构参数的准确性和精度,并导致延长的采集时间来实现改进的信噪比(SNR)。基于深度学习的图像去噪使用卷积神经网络(CNNS)具有卓越的性能,但通常需要额外的高SNR数据来监督CNN的培训,这降低了实际可行性。我们开发了一个自我监督的深度学习的方法,标题为“SDNDTI”,用于去噪DTI数据,这不需要额外的高SNR数据进行培训。具体地,SDNDTI将多向DTI数据划分为许多子集,每个子​​集中沿着沿着最佳选择的扩散编码方向组成的六个DWI卷,该编码方向是对张力配件的稳健,然后沿着拟合的扩散张量沿所有获取的方向合成DWI体积使用数据的每个子集作为CNN的输入数据。另一方面,SDNDTI沿着使用所有获取的数据作为训练目标的扩散张量,沿着获取的扩散编码方向合成DWI卷。 SDNDTI使用深3维CNN从合成的DWI卷中的每个子集中消除噪声,以匹配清洁器目标DWI卷的质量,通过平均所有去噪数据的所有子集实现更高的SNR。 SDNDTI的去噪功效在于人类连接项目(HCP)提供的两种数据集和衰老中的寿命HCP。 SDNDTI结果保留了图像清晰度和纹理细节,并大大改善了原始数据的影响。 SDNDTI的结果与来自最先进的传统去噪算法包括BM4D,AONLM和MPPCA的常规去噪算法的结果相当。
translated by 谷歌翻译
最近关于其他方式的核化图像T1辅助MRI重建的研究表明,进一步加速MRI收购其他方式的潜力。大多数最先进的方法通过开发用于固定的欠采样模式的网络架构来实现改进,而不完全利用方式之间的互补信息。尽管可以简单地修改现有的下采样模式学习算法以允许完全采样的T1加权MR图像来辅助模式学习,但是可以实现重建任务的显着改进。为此,我们提出了一个迭代框架,优化了MRI获取的另一种方式的采样下采样模式,可以在不同的下抽样因子中补充完全采样的T1加权MR图像,同时共同优化T1辅助MRI重建模型。具体地,我们所提出的方法利用两种模式之间的潜在信息的差异来确定可以最大化T1加权MR图像的辅助功率在改善MRI重建时最大化的采样模式。与常用的下采样模式和最先进的方法相比,我们在公共数据集中展示了我们在公共数据集上的学习的下采样模式的卓越表现,可以联合优化重建网络和欠采样模式以8倍的取样因子。
translated by 谷歌翻译
压缩传感(CS)一直在加速磁共振成像(MRI)采集过程中的关键作用。随着人工智能的复苏,深神经网络和CS算法正在集成以重新定义快速MRI的领域。过去几年目睹了基于深度学习的CS技术的复杂性,多样性和表现的大量增长,这些技术致力于快速MRI。在该荟萃分析中,我们系统地审查了快速MRI的深度学习的CS技术,描述了关键模型设计,突出突破,并讨论了有希望的方向。我们还介绍了一个综合分析框架和分类系统,以评估深度学习在基于CS的加速度的MRI的关键作用。
translated by 谷歌翻译
在相应的辅助对比的指导下,目标对比度的超级分辨磁共振(MR)图像(提供了其他解剖信息)是快速MR成像的新解决方案。但是,当前的多对比超分辨率(SR)方法倾向于直接连接不同的对比度,从而忽略了它们在不同的线索中的关系,例如在高强度和低强度区域中。在这项研究中,我们提出了一个可分离的注意网络(包括高强度的优先注意力和低强度分离注意力),名为SANET。我们的卫生网可以借助辅助对比度探索“正向”和“反向”方向中高强度和低强度区域的区域,同时学习目标对比MR的SR的更清晰的解剖结构和边缘信息图片。 SANET提供了三个吸引人的好处:(1)这是第一个探索可分离的注意机制的模型,该机制使用辅助对比来预测高强度和低强度区域,将更多的注意力转移到精炼这些区域和这些区域之间的任何不确定细节和纠正重建结果中的细小区域。 (2)提出了一个多阶段集成模块,以学习多个阶段的多对比度融合的响应,获得融合表示之间的依赖性,并提高其表示能力。 (3)在FastMRI和Clinical \ textit {in Vivo}数据集上进行了各种最先进的多对比度SR方法的广泛实验,证明了我们模型的优势。
translated by 谷歌翻译
Low-field (LF) MRI scanners have the power to revolutionize medical imaging by providing a portable and cheaper alternative to high-field MRI scanners. However, such scanners are usually significantly noisier and lower quality than their high-field counterparts. The aim of this paper is to improve the SNR and overall image quality of low-field MRI scans to improve diagnostic capability. To address this issue, we propose a Nested U-Net neural network architecture super-resolution algorithm that outperforms previously suggested deep learning methods with an average PSNR of 78.83 and SSIM of 0.9551. We tested our network on artificial noisy downsampled synthetic data from a major T1 weighted MRI image dataset called the T1-mix dataset. One board-certified radiologist scored 25 images on the Likert scale (1-5) assessing overall image quality, anatomical structure, and diagnostic confidence across our architecture and other published works (SR DenseNet, Generator Block, SRCNN, etc.). We also introduce a new type of loss function called natural log mean squared error (NLMSE). In conclusion, we present a more accurate deep learning method for single image super-resolution applied to synthetic low-field MRI via a Nested U-Net architecture.
translated by 谷歌翻译
$ t_ {1 \ rho} $映射是一种有希望的定量MRI技术,用于对组织性质的非侵入性评估。基于学习的方法可以从减少数量的$ t_ {1 \ rho} $加权图像中映射$ t_ {1 \ rho} $,但需要大量的高质量培训数据。此外,现有方法不提供$ t_ {1 \ rho} $估计的置信度。为了解决这些问题,我们提出了一个自我监督的学习神经网络,该网络使用学习过程中的放松约束来学习$ t_ {1 \ rho} $映射。为$ t_ {1 \ rho} $量化网络建立了认知不确定性和态度不确定性,以提供$ t_ {1 \ rho} $映射的贝叶斯置信度估计。不确定性估计还可以使模型规范化,以防止其学习不完美的数据。我们对52例非酒精性脂肪肝病患者收集的$ T_ {1 \ rho} $数据进行了实验。结果表明,我们的方法优于$ t_ {1 \ rho} $量化肝脏的现有方法,使用少于两个$ t_ {1 \ rho} $加权图像。我们的不确定性估计提供了一种可行的方法,可以建模基于自我监督学习的$ t_ {1 \ rho} $估计的信心,这与肝脏中的现实$ t_ {1 \ rho} $成像是一致的。
translated by 谷歌翻译
\ textit {objection:}基于gadolinium的对比剂(GBCA)已被广泛用于更好地可视化脑磁共振成像中的疾病(MRI)。然而,大脑和身体内部的gadolin量引起了人们对使用GBCA的安全问题。因此,在提供类似的对比度信息的同时,可以减少甚至消除GBCA暴露的新方法的发展将在临床上具有重大用途。 \ textit {方法:}在这项工作中,我们提出了一种基于深度学习的方法,用于对脑肿瘤患者的对比增强T1合成。 3D高分辨率完全卷积网络(FCN)通过处理和聚合并行的多尺度信息保持高分辨率信息,旨在将前对比度MRI序列映射到对比度增强的MRI序列。具体而言,将三个前对比的MRI序列T1,T2和表观扩散系数图(ADC)用作输入,而对比后T1序列则被用作目标输出。为了减轻正常组织与肿瘤区域之间的数据不平衡问题,我们引入了局部损失,以改善肿瘤区域的贡献,从而可以更好地增强对肿瘤的增强结果。 \ textIt {结果:}进行了广泛的定量和视觉评估,我们提出的模型在大脑中达到28.24db的PSNR,在肿瘤区域达到21.2db。 \ textit {结论和意义:}我们的结果表明,用深度学习产生的合成对比图像代替GBCA的潜力。代码可在\ url {https://github.com/chenchao666/contrast-enhanced-mri-synthesis中获得
translated by 谷歌翻译
磁共振成像可以产生人体解剖和生理学的详细图像,可以帮助医生诊断和治疗肿瘤等病理。然而,MRI遭受了非常长的收购时间,使其易于患者运动伪影并限制其潜力以提供动态治疗。诸如并行成像和压缩感测的常规方法允许通过使用多个接收器线圈获取更少的MRI数据来改变MR图像来增加MRI采集速度。深度学习的最新进步与平行成像和压缩传感技术相结合,具有从高度加速的MRI数据产生高保真重建。在这项工作中,我们通过利用卷积复发网络的特性和展开算法来解决复发变分网络(RevurrentVarnet)的加速改变网络(RevurrentVarnet)的任务,提出了一种基于深入的深度学习的反问题解决者。 RevurrentVarnet由多个块组成,每个块都负责梯度下降优化算法的一个展开迭代,以解决逆问题。与传统方法相反,优化步骤在观察域($ k $ -space)而不是图像域中进行。每次反复出的Varnet块都会通过观察到的$ k $ -space,并由数据一致性术语和复制单元组成,它将作为输入的隐藏状态和前一个块的预测。我们所提出的方法实现了新的最新状态,定性和定量重建导致来自公共多通道脑数据集的5倍和10倍加速数据,优于以前的传统和基于深度学习的方法。我们将在公共存储库上释放所有型号代码和基线。
translated by 谷歌翻译
用于医学图像重建的深度神经网络传统上使用高质量的地基图像作为训练目标训练。最近关于噪声的工作(N2N)已经示出了使用与具有地面真理的多个噪声测量的潜力。然而,现有的基于N2N的方法不适合于从经历非身份变形的物体的测量来学习。本文通过补偿对象变形来提出用于训练深层重建网络的变形补偿学习(DecoLearn)方法来解决此问题。DecoLearn的一个关键组件是一个深度登记模块,它与深度重建网络共同培训,没有任何地理监督。我们在模拟和实验收集的磁共振成像(MRI)数据上验证了甲板,并表明它显着提高了成像质量。
translated by 谷歌翻译
在本文中,我们开发了一种高效的回顾性深度学习方法,称为堆叠U-网,具有自助前沿,解决MRI中刚性运动伪影的问题。拟议的工作利用损坏的图像本身使用额外的知识前瞻,而无需额外的对比度数据。所提出的网络通过共享来自相同失真对象的连续片的辅助信息来学习错过的结构细节。我们进一步设计了一种堆叠的U-网的细化,便于保持图像空间细节,从而提高了像素到像素依赖性。为了执行网络培训,MRI运动伪像的模拟是不可避免的。我们使用各种类型的图像前瞻呈现了一个密集的分析:来自同一主题的其他图像对比的提出的自助前锋和前锋。实验分析证明了自助前锋的有效性和可行性,因为它不需要任何进一步的数据扫描。
translated by 谷歌翻译
Supervised Deep-Learning (DL)-based reconstruction algorithms have shown state-of-the-art results for highly-undersampled dynamic Magnetic Resonance Imaging (MRI) reconstruction. However, the requirement of excessive high-quality ground-truth data hinders their applications due to the generalization problem. Recently, Implicit Neural Representation (INR) has appeared as a powerful DL-based tool for solving the inverse problem by characterizing the attributes of a signal as a continuous function of corresponding coordinates in an unsupervised manner. In this work, we proposed an INR-based method to improve dynamic MRI reconstruction from highly undersampled k-space data, which only takes spatiotemporal coordinates as inputs. Specifically, the proposed INR represents the dynamic MRI images as an implicit function and encodes them into neural networks. The weights of the network are learned from sparsely-acquired (k, t)-space data itself only, without external training datasets or prior images. Benefiting from the strong implicit continuity regularization of INR together with explicit regularization for low-rankness and sparsity, our proposed method outperforms the compared scan-specific methods at various acceleration factors. E.g., experiments on retrospective cardiac cine datasets show an improvement of 5.5 ~ 7.1 dB in PSNR for extremely high accelerations (up to 41.6-fold). The high-quality and inner continuity of the images provided by INR has great potential to further improve the spatiotemporal resolution of dynamic MRI, without the need of any training data.
translated by 谷歌翻译