低剂量和高剂量CT图像的采集条件通常是不同的,因此CT数字的变化经常发生。因此,学习目标图像分布的无监督深度学习方法通常会引入CT数字扭曲,并在诊断性能中造成不利影响。为了解决这个问题,我们在这里提出了一种新颖的无监督学习方法,用于使用贴剂深度度量学习进行低水平CT重建。关键的想法是通过拉动具有相同解剖结构的图像贴片的正面对来学习嵌入空间,并推动具有相同噪声水平的负对。因此,该网络经过训练以抑制噪声水平,同时即使在图像翻译后仍保留原始的全局CT数字分布。实验结果证实,我们的深度度量学习在产生没有CT数字的高质量DeNocied图像中起着至关重要的作用。
translated by 谷歌翻译
图像去噪是许多领域下游任务的先决条件。低剂量和光子计数计算断层扫描(CT)去噪可以在最小化辐射剂量下优化诊断性能。监督深层去噪方法是流行的,但需要成对的清洁或嘈杂的样本通常在实践中不可用。受独立噪声假设的限制,电流无监督的去噪方法不能处理与CT图像中的相关噪声。在这里,我们提出了一种基于类似的类似性的无人监督的无监督的深度去噪方法,称为Coxing2Sim,以非局部和非线性方式起作用,不仅抑制独立而且还具有相关的噪音。从理论上讲,噪声2SIM在温和条件下渐近相当于监督学习方法。通过实验,Nosie2SIM从嘈杂的低剂量CT和光子计数CT图像中的内在特征,从视觉上,定量和统计上有效地或甚至优于实际数据集的监督学习方法。 Coke2Sim是一般无监督的去噪方法,在不同的应用中具有很大的潜力。
translated by 谷歌翻译
减少全身CT扫描中患者的辐射暴露引起了医学成像界的广泛关注。鉴于低辐射剂量可能导致噪声和伪像增加,这极大地影响了临床诊断。为了获得高质量的全身低剂量CT(LDCT)图像,以前的基于深度学习的研究工作引入了各种网络架构。然而,大多数这些方法只采用正常剂量CT(NDCT)图像作为地面真理来指导去噪网络的训练。这种简单的限制导致模型效率更低,并使重建的图像遭受过平滑的效果。在本文中,我们提出了一种新的任务内知识转移方法,利用来自NDCT图像的蒸馏知识来帮助LDCT图像上的培训过程。派生架构被称为师生一致性网络(TSC-Net),由教师网络和具有相同架构的学生网络组成。通过中间功能之间的监督,鼓励学生网络模仿教师网络并获得丰富的纹理细节。此外,为了进一步利用CT扫描中包含的信息,介绍了在对比学习时建立的对比正规化机制(CRM).CRM执行将恢复的CT图像拉到NDCT样本,并将远离LDCT样本的遥控器中的遥远空间。此外,基于注意力和可变形卷积机制,我们设计了一种动态增强模块(DEM)以提高网络变换能力。
translated by 谷歌翻译
对比学习在各种高级任务中取得了显着的成功,但是为低级任务提出了较少的方法。采用VANILLA对比学习技术采用直接为低级视觉任务提出的VANILLA对比度学习技术,因为所获得的全局视觉表现不足以用于需要丰富的纹理和上下文信息的低级任务。在本文中,我们提出了一种用于单图像超分辨率(SISR)的新型对比学习框架。我们从两个视角调查基于对比的学习的SISR:样品施工和特征嵌入。现有方法提出了一些天真的样本施工方法(例如,考虑到作为负样本的低质量输入以及作为正样品的地面真理),并且它们采用了先前的模型(例如,预先训练的VGG模型)来获得该特征嵌入而不是探索任务友好的。为此,我们向SISR提出了一个实用的对比学习框架,涉及在频率空间中产生许多信息丰富的正负样本。我们不是利用其他预先训练的网络,我们设计了一种从鉴别器网络继承的简单但有效的嵌入网络,并且可以用主SR网络迭代优化,使其成为任务最通报。最后,我们对我们的方法进行了广泛的实验评估,与基准方法相比,在目前的最先进的SISR方法中显示出高达0.21 dB的显着增益。
translated by 谷歌翻译
这项工作提出了一个新颖的框架CISFA(对比图像合成和自我监督的特征适应),该框架建立在图像域翻译和无监督的特征适应性上,以进行跨模式生物医学图像分割。与现有作品不同,我们使用单方面的生成模型,并在输入图像的采样贴片和相应的合成图像之间添加加权贴片对比度损失,该图像用作形状约束。此外,我们注意到生成的图像和输入图像共享相似的结构信息,但具有不同的方式。因此,我们在生成的图像和输入图像上强制实施对比损失,以训练分割模型的编码器,以最大程度地减少学到的嵌入空间中成对图像之间的差异。与依靠对抗性学习进行特征适应的现有作品相比,这种方法使编码器能够以更明确的方式学习独立于域的功能。我们对包含腹腔和全心的CT和MRI图像的分割任务进行了广泛评估。实验结果表明,所提出的框架不仅输出了较小的器官形状变形的合成图像,而且还超过了最先进的域适应方法的较大边缘。
translated by 谷歌翻译
受监管的基于学习的方法屈服于强大的去噪结果,但它们本质上受到大规模清洁/嘈杂配对数据集的需要。另一方面,使用无监督的脱言机需要更详细地了解潜在的图像统计数据。特别是,众所周知,在高频频带上,清洁和嘈杂的图像之间的表观差异是最突出的,证明使用低通滤波器作为传统图像预处理步骤的一部分。然而,基于大多数基于学习的去噪方法在不考虑频域信息的情况下仅利用来自空间域的片面信息。为了解决这一限制,在本研究中,我们提出了一种频率敏感的无监督去噪方法。为此,使用生成的对抗性网络(GaN)作为基础结构。随后,我们包括光谱鉴别器和频率重建损失,以将频率知识传输到发电机中。使用自然和合成数据集的结果表明,我们无监督的学习方法增强了频率信息,实现了最先进的去噪能力,表明频域信息可能是提高无监督基于学习的方法的整体性能的可行因素。
translated by 谷歌翻译
计算机断层扫描(CT)使用从身体周围的传感器取出的X射线测量以产生人体的断层图像。如果X射线数据充分采样和高质量,则可以使用传统的重建算法;然而,诸如将剂量减少给患者的问题,或数据采集的几何限制可能导致低质量或不完整的数据。由于噪声和其他伪像,使用传统方法从这些数据重建的图像具有差的质量。本研究的目的是训练单个神经网络,从嘈杂或不完全CT扫描数据重建高质量CT图像,包括低剂量,稀疏视图和有限的角度场景。为了完成这项任务,我们将生成的对冲网络(GaN)作为信号训练,以与CT数据的迭代同步代数重建技术(SART)结合使用。网络包括自我关注块,以模拟数据中的远程依赖性。我们将我们的自我关注GaN进行CT图像重建,包括几种最先进的方法,包括去噪循环GaN,Circle GaN和总变化的校长算法。我们的方法被证明是可以相当的整体性能来圈出GaN,同时优于其他两种方法。
translated by 谷歌翻译
基于深度神经网络(DNN)的大多数CT图像去噪文献表明,DNN在诸如RMSE,PSNR和SSSIM之类的度量方面优于传统的迭代方法。在许多情况下,使用相同的度量,低剂量输入的DNN结果也显示为与它们的高剂量对应物相当。然而,这些指标不透露如果DNN结果保留细微病变的可见性,或者如果它们改变CT图像属性,例如噪声纹理。因此,在这项工作中,我们寻求研究DNN的图像质量来自整体观点的低剂量CT图像去噪。首先,我们构建一个高级DNN去噪架构的库。该库由DNCNN,U-Net,Red-Net,GaN等的去噪架构组成。接下来,每个网络都被建模,以及培训,使其在PSNR和SSIM方面产生最佳性能。因此,相应地调整了数据输入(例如,培训补丁大小,重建内核)和数字优化输入(例如,小型匹配大小,学习率,丢失功能)。最后,由此培训的网络的输出进一步受到一系列CT台式测试度量,例如对比度的MTF,NPS和HU精度。这些指标用于对DNN输出的低对比度特征,噪声纹理及其CT号精度的分辨率进行更细微的研究,以更好地理解每个DNN算法对图像质量的这些基础属性的影响。
translated by 谷歌翻译
现实世界图像Denoising是一个实用的图像恢复问题,旨在从野外嘈杂的输入中获取干净的图像。最近,Vision Transformer(VIT)表现出强大的捕获远程依赖性的能力,许多研究人员试图将VIT应用于图像DeNosing任务。但是,现实世界的图像是一个孤立的框架,它使VIT构建了内部贴片的远程依赖性,该依赖性将图像分为贴片并混乱噪声模式和梯度连续性。在本文中,我们建议通过使用连续的小波滑动转换器来解决此问题,该小波滑动转换器在现实世界中构建频率对应关系,称为dnswin。具体而言,我们首先使用CNN编码器从嘈杂的输入图像中提取底部功能。 DNSWIN的关键是将高频和低频信息与功能和构建频率依赖性分开。为此,我们提出了小波滑动窗口变压器,该变压器利用离散的小波变换,自我注意力和逆离散小波变换来提取深度特征。最后,我们使用CNN解码器将深度特征重建为DeNo的图像。对现实世界的基准测试的定量和定性评估都表明,拟议的DNSWIN对最新方法的表现良好。
translated by 谷歌翻译
Segmenting the fine structure of the mouse brain on magnetic resonance (MR) images is critical for delineating morphological regions, analyzing brain function, and understanding their relationships. Compared to a single MRI modality, multimodal MRI data provide complementary tissue features that can be exploited by deep learning models, resulting in better segmentation results. However, multimodal mouse brain MRI data is often lacking, making automatic segmentation of mouse brain fine structure a very challenging task. To address this issue, it is necessary to fuse multimodal MRI data to produce distinguished contrasts in different brain structures. Hence, we propose a novel disentangled and contrastive GAN-based framework, named MouseGAN++, to synthesize multiple MR modalities from single ones in a structure-preserving manner, thus improving the segmentation performance by imputing missing modalities and multi-modality fusion. Our results demonstrate that the translation performance of our method outperforms the state-of-the-art methods. Using the subsequently learned modality-invariant information as well as the modality-translated images, MouseGAN++ can segment fine brain structures with averaged dice coefficients of 90.0% (T2w) and 87.9% (T1w), respectively, achieving around +10% performance improvement compared to the state-of-the-art algorithms. Our results demonstrate that MouseGAN++, as a simultaneous image synthesis and segmentation method, can be used to fuse cross-modality information in an unpaired manner and yield more robust performance in the absence of multimodal data. We release our method as a mouse brain structural segmentation tool for free academic usage at https://github.com/yu02019.
translated by 谷歌翻译
由于CT相关的X射线辐射对患者的潜在健康风险,LDCT在医学成像领域引起了重大关注。然而,减少辐射剂量会降低重建图像的质量,从而损害了诊断性能。已经引入了各种深度学习技术来通过去噪提高LDCT图像的图像质量。基于GANS的去噪方法通常利用额外的分类网络,即鉴别者,学习被去噪和正常剂量图像之间最辨别的差异,因此相应地规范脱景模型;它通常侧重于全球结构或本地细节。为了更好地规范LDCT去噪模式,本文提出了一种新的方法,被称为Du-GaN,该方法利用GANS框架中的U-Net基于鉴别者来学习两种图像中的去噪和正常剂量图像之间的全局和局部差异渐变域。这种基于U-Net的鉴别器的优点是它不仅可以通过U-Net的输出向去噪网络提供每个像素反馈,而且还通过中间层专注于语义层中的全局结构U-net。除了图像域中的对抗性训练之外,我们还应用于图像梯度域中的另一个基于U-Net的鉴别器,以减轻由光子饥饿引起的伪像并增强去噪CT图像的边缘。此外,Cutmix技术使基于U-Net的鉴别器的每个像素输出能够提供具有置信度图的放射科学家以可视化去噪结果的不确定性,促进基于LDCT的筛选和诊断。关于模拟和现实世界数据集的广泛实验在定性和定量上展示了最近发表的方法的优越性。
translated by 谷歌翻译
由于受试者辍学或扫描失败,在纵向研究中不可避免地扫描是不可避免的。在本文中,我们提出了一个深度学习框架,以预测获得的扫描中缺少扫描,从而迎合纵向婴儿研究。由于快速的对比和结构变化,特别是在生命的第一年,对婴儿脑MRI的预测具有挑战性。我们引入了值得信赖的变质生成对抗网络(MGAN),用于将婴儿脑MRI从一个时间点转换为另一个时间点。MGAN具有三个关键功能:(i)图像翻译利用空间和频率信息以进行详细信息提供映射;(ii)将注意力集中在具有挑战性地区的质量指导学习策略。(iii)多尺度杂种损失函数,可改善组织对比度和结构细节的翻译。实验结果表明,MGAN通过准确预测对比度和解剖学细节来优于现有的gan。
translated by 谷歌翻译
作为混合成像技术,光声显微镜(PAM)成像由于激光强度的最大允许暴露,组织中超声波的衰减以及换能器的固有噪声而受到噪声。去噪是降低噪声的后处理方法,并且可以恢复PAM图像质量。然而,之前的去噪技术通常严重依赖于数学前导者以及手动选择的参数,导致对不同噪声图像的不令人满意和慢的去噪能,这极大地阻碍了实用和临床应用。在这项工作中,我们提出了一种基于深度学习的方法,可以从PAM图像中除去复杂的噪声,没有数学前导者,并手动选择不同输入图像的设置。注意增强的生成对抗性网络用于提取图像特征并去除各种噪声。在合成和实际数据集上证明了所提出的方法,包括幻影(叶静脉)和体内(小鼠耳血管和斑马鱼颜料)实验。结果表明,与先前的PAM去噪方法相比,我们的方法在定性和定量上恢复图像时表现出良好的性能。此外,为256次\ times256 $像素的图像实现了0.016 s的去噪速度。我们的方法对于PAM图像的去噪有效和实用。
translated by 谷歌翻译
基于深度学习的解决方案正在为各种应用程序成功实施。最值得注意的是,临床用例已增加了兴趣,并且是过去几年提出的一些尖端数据驱动算法背后的主要驱动力。对于诸如稀疏视图重建等应用,其中测量数据的量很少,以使获取时间短而且辐射剂量较低,降低了串联的伪像,促使数据驱动的DeNoINEDENO算法的开发,其主要目标是获得获得的主要目标。只有一个全扫描数据的子集诊断可行的图像。我们提出了WNET,这是一个数据驱动的双域denoising模型,其中包含用于稀疏视图deNoising的可训练的重建层。两个编码器 - 模型网络同时在正式和重建域中执行deno,而实现过滤后的反向投影算法的第三层则夹在前两种之间,并照顾重建操作。我们研究了该网络在稀疏视图胸部CT扫描上的性能,并突出显示了比更传统的固定层具有可训练的重建层的额外好处。我们在两个临床相关的数据集上训练和测试我们的网络,并将获得的结果与三种不同类型的稀疏视图CT CT DeNoisis和重建算法进行了比较。
translated by 谷歌翻译
无监督的图像传输可用于医疗应用内和模式间转移,其中大量配对训练数据不丰富。为了确保从输入到目标域的结构映射,现有的未配对医疗图像转移的方法通常基于周期矛盾,由于学习了反向映射,导致了其他计算资源和不稳定。本文介绍了一种新颖的单向域映射方法,在整个培训过程中不需要配对数据。通过采用GAN体系结构和基于贴片不变性的新颖发电机损失来确保合理的转移。更确切地说,对发电机的输出进行了评估和比较,并在不同的尺度上进行了比较,这使人们对高频细节以及隐式数据增强进行了越来越多的关注。这个新颖的术语还提供了通过对斑块残差建模输入依赖性量表图来预测不确定性的机会。提出的方法在三个著名的医疗数据库上进行了全面评估。这些数据集的卓越精度与未配对图像转移的四种不同的最新方法相比,这表明了这种方法对不确定性感知的医学图像翻译的巨大潜力。建议的框架的实施在此处发布:https://github.com/anger-man/unsupervise-image-image-transfer-and-uq。
translated by 谷歌翻译
Image restoration under hazy weather condition, which is called single image dehazing, has been of significant interest for various computer vision applications. In recent years, deep learning-based methods have achieved success. However, existing image dehazing methods typically neglect the hierarchy of features in the neural network and fail to exploit their relationships fully. To this end, we propose an effective image dehazing method named Hierarchical Contrastive Dehazing (HCD), which is based on feature fusion and contrastive learning strategies. HCD consists of a hierarchical dehazing network (HDN) and a novel hierarchical contrastive loss (HCL). Specifically, the core design in the HDN is a Hierarchical Interaction Module, which utilizes multi-scale activation to revise the feature responses hierarchically. To cooperate with the training of HDN, we propose HCL which performs contrastive learning on hierarchically paired exemplars, facilitating haze removal. Extensive experiments on public datasets, RESIDE, HazeRD, and DENSE-HAZE, demonstrate that HCD quantitatively outperforms the state-of-the-art methods in terms of PSNR, SSIM and achieves better visual quality.
translated by 谷歌翻译
最近,卷积神经网络(CNN)已被广泛用于图像DeNoising。现有方法受益于剩余学习并获得高性能。许多研究都注意到优化CNN的网络体系结构,但忽略了残留学习的局限性。本文提出了两个局限性。一个是残留学习的重点是估计噪声,从而忽略图像信息。另一个是图像自相似性没有被有效考虑。本文提出了一个组成剥落网络(CDN),其图像信息路径(IIP)和噪声估计路径(NEP)将分别解决这两个问题。 IIP通过图像到图像的方法来培训图像信息。对于NEP,它从训练的角度利用了图像自相似性。这种基于相似性的训练方法将NEP限制为输出具有特定类型噪声的不同图像贴片的相似估计噪声分布。最后,将全面考虑图像信息和噪声分布信息,以进行图像denoising。实验表明,CDN达到最新的结果会导致合成和现实世界图像降解。我们的代码将在https://github.com/jiahongz/cdn上发布。
translated by 谷歌翻译
Self-supervised image denoising techniques emerged as convenient methods that allow training denoising models without requiring ground-truth noise-free data. Existing methods usually optimize loss metrics that are calculated from multiple noisy realizations of similar images, e.g., from neighboring tomographic slices. However, those approaches fail to utilize the multiple contrasts that are routinely acquired in medical imaging modalities like MRI or dual-energy CT. In this work, we propose the new self-supervised training scheme Noise2Contrast that combines information from multiple measured image contrasts to train a denoising model. We stack denoising with domain-transfer operators to utilize the independent noise realizations of different image contrasts to derive a self-supervised loss. The trained denoising operator achieves convincing quantitative and qualitative results, outperforming state-of-the-art self-supervised methods by 4.7-11.0%/4.8-7.3% (PSNR/SSIM) on brain MRI data and by 43.6-50.5%/57.1-77.1% (PSNR/SSIM) on dual-energy CT X-ray microscopy data with respect to the noisy baseline. Our experiments on different real measured data sets indicate that Noise2Contrast training generalizes to other multi-contrast imaging modalities.
translated by 谷歌翻译
高动态范围(HDR)成像是图像处理中的一个基本问题,即使在场景中存在不同的照明的情况下,它旨在产生暴露良好的图像。近年来,多曝光融合方法已取得了显着的结果,该方法合并了多个具有不同暴露的动态范围(LDR)图像,以生成相应的HDR图像。但是,在动态场景中综合HDR图像仍然具有挑战性,并且需求量很高。生产HDR图像有两个挑战:1)。 LDR图像之间的对象运动很容易在生成的结果中引起不良的幽灵伪像。 2)。由于在合并阶段对这些区域的补偿不足,因此下区域和过度曝光的区域通常包含扭曲的图像含量。在本文中,我们提出了一个多尺度采样和聚合网络,用于在动态场景中进行HDR成像。为了有效地减轻小动作和大型动作引起的问题,我们的方法通过以粗到精细的方式对LDR图像进行了暗中对齐LDR图像。此外,我们提出了一个基于离散小波转换的密集连接的网络,以改善性能,该网络将输入分解为几个非重叠频率子带,并在小波域中自适应地执行补偿。实验表明,与其他有希望的HDR成像方法相比,我们提出的方法可以在不同场景下实现最新的性能。此外,由我们的方法生成的HDR图像包含清洁剂和更详细的内容,扭曲较少,从而带来更好的视觉质量。
translated by 谷歌翻译
具有高分辨率的视网膜光学相干断层扫描术(八八)对于视网膜脉管系统的定量和分析很重要。然而,八颗图像的分辨率与相同采样频率的视野成反比,这不利于临床医生分析较大的血管区域。在本文中,我们提出了一个新型的基于稀疏的域适应超分辨率网络(SASR),以重建现实的6x6 mm2/低分辨率/低分辨率(LR)八八粒图像,以重建高分辨率(HR)表示。更具体地说,我们首先对3x3 mm2/高分辨率(HR)图像进行简单降解,以获得合成的LR图像。然后,采用一种有效的注册方法在6x6 mm2图像中以其相应的3x3 mm2图像区域注册合成LR,以获得裁切的逼真的LR图像。然后,我们提出了一个多级超分辨率模型,用于对合成数据进行全面监督的重建,从而通过生成的对流策略指导现实的LR图像重建现实的LR图像,该策略允许合成和现实的LR图像可以在特征中统一。领域。最后,新型的稀疏边缘感知损失旨在动态优化容器边缘结构。在两个八八集中进行的广泛实验表明,我们的方法的性能优于最先进的超分辨率重建方法。此外,我们还研究了重建结果对视网膜结构分割的性能,这进一步验证了我们方法的有效性。
translated by 谷歌翻译