我们为图像去噪提供了一个名为自我验证的新正规化。使用网络以前的深度图像而不是传统的预定义先决义的阵列制定了这种正则化。具体而言,我们将网络的输出视为“先前”,我们在“重新注册”之后再次欺骗。再次去噪图像与其之前的比较可以解释为网络的去噪能力的自我验证。我们证明自我验证鼓励网络捕获恢复图像所需的低级图像统计数据。基于这种自我验证正规化,我们进一步表明,即使它没有看到任何清洁图像,网络也可以学习去代标。这种学习策略是自我监督的,我们将其称为自我验证图像去噪(SVID)。 SVID可以被视为基于学习的方法和传统的基于模型的去噪方法的混合,其中使用网络的输出自适应地配制正则化。我们仅使用观察到损坏的数据显示SVID对各种去噪任务的应用。它可以实现接近监督CNN的去噪性能。
translated by 谷歌翻译
图像去噪是许多领域下游任务的先决条件。低剂量和光子计数计算断层扫描(CT)去噪可以在最小化辐射剂量下优化诊断性能。监督深层去噪方法是流行的,但需要成对的清洁或嘈杂的样本通常在实践中不可用。受独立噪声假设的限制,电流无监督的去噪方法不能处理与CT图像中的相关噪声。在这里,我们提出了一种基于类似的类似性的无人监督的无监督的深度去噪方法,称为Coxing2Sim,以非局部和非线性方式起作用,不仅抑制独立而且还具有相关的噪音。从理论上讲,噪声2SIM在温和条件下渐近相当于监督学习方法。通过实验,Nosie2SIM从嘈杂的低剂量CT和光子计数CT图像中的内在特征,从视觉上,定量和统计上有效地或甚至优于实际数据集的监督学习方法。 Coke2Sim是一般无监督的去噪方法,在不同的应用中具有很大的潜力。
translated by 谷歌翻译
盲图修复(IR)是计算机视觉中常见但充满挑战的问题。基于经典模型的方法和最新的深度学习(DL)方法代表了有关此问题的两种不同方法,每种方法都有自己的优点和缺点。在本文中,我们提出了一种新颖的盲图恢复方法,旨在整合它们的两种优势。具体而言,我们为盲IR构建了一个普通的贝叶斯生成模型,该模型明确描绘了降解过程。在此提出的模型中,PICEL的非I.I.D。高斯分布用于适合图像噪声。它的灵活性比简单的I.I.D。在大多数常规方法中采用的高斯或拉普拉斯分布,以处理图像降解中包含的更复杂的噪声类型。为了解决该模型,我们设计了一个变异推理算法,其中所有预期的后验分布都被参数化为深神经网络,以提高其模型能力。值得注意的是,这种推论算法诱导统一的框架共同处理退化估计和图像恢复的任务。此外,利用了前一种任务中估计的降解信息来指导后一种红外过程。对两项典型的盲型IR任务进行实验,即图像降解和超分辨率,表明所提出的方法比当前最新的方法实现了卓越的性能。
translated by 谷歌翻译
荧光显微镜是促进生物医学研究发现的关键驱动力。但是,随着显微镜硬件的局限性和观察到的样品的特征,荧光显微镜图像易受噪声。最近,已经提出了一些自我监督的深度学习(DL)denoising方法。但是,现有方法的训练效率和降解性能在实际场景噪声中相对较低。为了解决这个问题,本文提出了自我监督的图像denoising方法噪声2SR(N2SR),以训练基于单个嘈杂观察的简单有效的图像Denoising模型。我们的noings2SR Denoising模型设计用于使用不同维度的配对嘈杂图像进行训练。从这种训练策略中受益,Noige2SR更有效地自我监督,能够从单个嘈杂的观察结果中恢复更多图像细节。模拟噪声和真实显微镜噪声的实验结果表明,噪声2SR优于两个基于盲点的自我监督深度学习图像Denoising方法。我们设想噪声2SR有可能提高更多其他类型的科学成像质量。
translated by 谷歌翻译
通过最近基于深度学习的方法显示出令人鼓舞的结果,可以消除图像中的噪音,在有监督的学习设置中报道了最佳的降级性能,该设置需要大量的配对嘈杂图像和训练的基础真相。强大的数据需求可以通过无监督的学习技术来减轻,但是,对于高质量的解决方案,图像或噪声方差的准确建模仍然至关重要。对于未知的噪声分布而言,学习问题不足。本文研究了单个联合学习框架中图像降解和噪声方差估计的任务。为了解决问题的不良性,我们提出了深度差异先验(DVP),该差异指出,适当学到的DeNoiser在噪声变化方面的变化满足了一些平滑度的特性,这是良好DeNoiser的关键标准。建立在DVP的基础上,这是一个无监督的深度学习框架,同时学习了Denoiser并估算了噪声差异。我们的方法不需要任何干净的训练图像或噪声估计的外部步骤,而是仅使用一组嘈杂的图像近似于最小平方误差Denoisiser。在一个框架中考虑了两个基本任务,我们允许它们相互优化。实验结果表明,具有与监督的学习和准确的噪声方差估计值相当的质量。
translated by 谷歌翻译
最近,由于高性能,深度学习方法已成为生物学图像重建和增强问题的主要研究前沿,以及其超快速推理时间。但是,由于获得监督学习的匹配参考数据的难度,对不需要配对的参考数据的无监督学习方法越来越兴趣。特别是,已成功用于各种生物成像应用的自我监督的学习和生成模型。在本文中,我们概述了在古典逆问题的背景下的连贯性观点,并讨论其对生物成像的应用,包括电子,荧光和去卷积显微镜,光学衍射断层扫描和功能性神经影像。
translated by 谷歌翻译
在过去的几年中,未配对的图像DeNoising取得了有希望的发展。无论表现如何,方法都倾向于严重依赖潜在的噪声属性或任何并不总是实用的假设。另外,如果我们可以从结构的角度而不是噪声统计数据解决问题,那么我们可以实现更强大的解决方案。通过这种动机,我们提出了一个自制的剥夺计划,该计划是不成功的,依赖于空间降解,然后进行正规化的精炼。我们的方法比以前的方法显示出显着改善,并且在不同的数据域上表现出一致的性能。
translated by 谷歌翻译
Deconvolution is a widely used strategy to mitigate the blurring and noisy degradation of hyperspectral images~(HSI) generated by the acquisition devices. This issue is usually addressed by solving an ill-posed inverse problem. While investigating proper image priors can enhance the deconvolution performance, it is not trivial to handcraft a powerful regularizer and to set the regularization parameters. To address these issues, in this paper we introduce a tuning-free Plug-and-Play (PnP) algorithm for HSI deconvolution. Specifically, we use the alternating direction method of multipliers (ADMM) to decompose the optimization problem into two iterative sub-problems. A flexible blind 3D denoising network (B3DDN) is designed to learn deep priors and to solve the denoising sub-problem with different noise levels. A measure of 3D residual whiteness is then investigated to adjust the penalty parameters when solving the quadratic sub-problems, as well as a stopping criterion. Experimental results on both simulated and real-world data with ground-truth demonstrate the superiority of the proposed method.
translated by 谷歌翻译
Tweedie分布是指数色散模型的特殊情况,它通常用于古典统计作为广义线性模型的分布。在这里,我们揭示了Tweedie发行版也在现代深度学习时代发挥关键作用,导致分布独立的自我监督图像去噪公式,没有清洁参考图像。具体地,通过与最近的噪声2Score自我监督的图像去噪方法和旋转点分布的鞍点近似来组合,我们可以提供一种可以用于大类噪声分布的一般封闭式去噪公式,而不知道底层噪声分布。与原始噪声2Score类似,新方法由两个连续的步骤组成:使用扰动噪声图像的分数匹配,然后是通过分布无关的Tweedie公式的闭合形式图像去噪公式。这还提出了一种系统算法来估计给定嘈杂的图像数据集的噪声模型和噪声参数。通过广泛的实验,我们证明了所提出的方法可以准确地估计噪声模型和参数,并在基准数据集和现实世界数据集中提供最先进的自我监督图像去噪表现。
translated by 谷歌翻译
本文提出了图像恢复的新变异推理框架和一个卷积神经网络(CNN)结构,该结构可以解决所提出的框架所描述的恢复问题。较早的基于CNN的图像恢复方法主要集中在网络体系结构设计或培训策略上,具有非盲方案,其中已知或假定降解模型。为了更接近现实世界的应用程序,CNN还接受了整个数据集的盲目培训,包括各种降解。然而,给定有多样化的图像的高质量图像的条件分布太复杂了,无法通过单个CNN学习。因此,也有一些方法可以提供其他先验信息来培训CNN。与以前的方法不同,我们更多地专注于基于贝叶斯观点以及如何重新重新重构目标的恢复目标。具体而言,我们的方法放松了原始的后推理问题,以更好地管理子问题,因此表现得像分裂和互动方案。结果,与以前的框架相比,提出的框架提高了几个恢复问题的性能。具体而言,我们的方法在高斯denoising,现实世界中的降噪,盲图超级分辨率和JPEG压缩伪像减少方面提供了最先进的性能。
translated by 谷歌翻译
现有的视频denoising方法通常假设嘈杂的视频通过添加高斯噪声从干净的视频中降低。但是,经过这种降解假设训练的深层模型将不可避免地导致由于退化不匹配而导致的真实视频的性能差。尽管一些研究试图在摄像机捕获的嘈杂和无噪声视频对上训练深层模型,但此类模型只能对特定的相机很好地工作,并且对其他视频的推广不佳。在本文中,我们建议提高此限制,并专注于一般真实视频的问题,目的是在看不见的现实世界视频上概括。我们首先调查视频噪音的共同行为来解决这个问题,并观察两个重要特征:1)缩减有助于降低空间空间中的噪声水平; 2)来自相邻框架的信息有助于消除时间上的当前框架的噪声空间。在这两个观察结果的推动下,我们通过充分利用上述两个特征提出了多尺度的复发架构。其次,我们通过随机调整不同的噪声类型来训练Denoising模型来提出合成真实的噪声降解模型。借助合成和丰富的降解空间,我们的退化模型可以帮助弥合训练数据和现实世界数据之间的分布差距。广泛的实验表明,与现有方法相比,我们所提出的方法实现了最先进的性能和更好的概括能力,而在合成高斯denoising和实用的真实视频denoisising方面都具有现有方法。
translated by 谷歌翻译
Discriminative model learning for image denoising has been recently attracting considerable attentions due to its favorable denoising performance. In this paper, we take one step forward by investigating the construction of feed-forward denoising convolutional neural networks (DnCNNs) to embrace the progress in very deep architecture, learning algorithm, and regularization method into image denoising. Specifically, residual learning and batch normalization are utilized to speed up the training process as well as boost the denoising performance. Different from the existing discriminative denoising models which usually train a specific model for additive white Gaussian noise (AWGN) at a certain noise level, our DnCNN model is able to handle Gaussian denoising with unknown noise level (i.e., blind Gaussian denoising). With the residual learning strategy, DnCNN implicitly removes the latent clean image in the hidden layers. This property motivates us to train a single DnCNN model to tackle with several general image denoising tasks such as Gaussian denoising, single image super-resolution and JPEG image deblocking. Our extensive experiments demonstrate that our DnCNN model can not only exhibit high effectiveness in several general image denoising tasks, but also be efficiently implemented by benefiting from GPU computing.
translated by 谷歌翻译
图像增强方法通常假定噪声是无关的,并且将降解模型近似为零均值的加性高斯。但是,这种假设不适合生物医学成像系统,在生物医学成像系统中,基于传感器的噪声源与信号强度成正比,并且噪声更好地表示为泊松过程。在这项工作中,我们探讨了一种基于词典学习的方法,并提出了一种新颖的自我监督学习方法,用于单像denoising,其中噪声近似为泊松过程,不需要干净的地面真实数据。具体而言,我们近似于通过反复的神经网络进行图像降级的传统迭代优化算法,该神经网络可实现相对于网络的权重的稀疏性。由于稀疏表示形式基于基础图像,因此它能够抑制图像贴片中的虚假组件(噪声),从而引入隐式正则化,以通过网络结构来降级任务。在两个生物成像数据集上的实验表明,我们的方法在PSNR和SSIM方面优于最先进的方法。我们的定性结果表明,除了在标准定量指标上进行更高的性能外,我们还能够比其他比较方法恢复更多的细节。我们的代码可在https://github.com/tacalvin/poisson2sparse上公开提供。
translated by 谷歌翻译
缺乏大规模嘈杂的图像对限制了监督的去噪方法在实际应用中部署。虽然现有无监督的方法能够在没有地面真理清洁图像的情况下学习图像去噪,但它们要么在不切实际的设置下表现出差或工作不佳(例如,配对嘈杂的图像)。在本文中,我们提出了一种实用的无监督图像去噪方法,以实现最先进的去噪性能。我们的方法只需要单一嘈杂的图像和噪声模型,可以在实际的原始图像去噪中轻松访问。它迭代地执行两个步骤:(1)构造具有来自噪声模型的随机噪声的噪声噪声数据集; (2)在噪声 - 嘈杂数据集上培训模型,并使用经过培训的模型来优化嘈杂的图像以获得下一轮中使用的目标。我们进一步近似我们的全迭代方法,具有快速算法,以实现更高效的培训,同时保持其原始高性能。实验对现实世界,合成和相关噪声的实验表明,我们提出的无监督的去噪方法具有卓越的现有无监督方法和具有监督方法的竞争性能。此外,我们认为现有的去噪数据集质量低,只包含少数场景。为了评估现实世界应用中的原始图像去噪表现,我们建立了一个高质量的原始图像数据集Sensenoise-500,包含500个现实生活场景。数据集可以作为更好地评估原始图像去噪的强基准。代码和数据集将在https://github.com/zhangyi-3/idr发布
translated by 谷歌翻译
受深神经网络的巨大成功的启发,基于学习的方法在计算机断层扫描(CT)图像中获得了有希望的金属伪像(MAR)的表现。但是,大多数现有方法更加强调建模并嵌入本特定MAR任务的内在先验知识中,将其纳入其网络设计中。在这个问题上,我们提出了一个自适应卷积词典网络(ACDNET),该网络利用基于模型的方法和基于学习的方法。具体而言,我们探讨了金属伪像的先前结构,例如非本地重复条纹模式,并将其编码为显式加权卷积词典模型。然后,仔细设计了一种简单的算法来解决模型。通过将所提出算法的每个迭代取代展开到网络模块中,我们将先前的结构明确嵌入到深网中,\ emph {i.e。,}对MAR任务的明确解释性。此外,我们的ACDNET可以通过训练数据自动学习无伪影CT图像的先验,并根据其内容自适应地调整每个输入CT图像的表示内核。因此,我们的方法继承了基于模型的方法的明确解释性,并保持了基于学习的方法的强大表示能力。在合成和临床数据集上执行的综合实验表明,在有效性和模型概括方面,我们的ACDNET的优越性。 {\ color {blue} {{\ textIt {代码可在{\ url {https://github.com/hongwang01/acdnet}}}}}}}}}}}}}}}}
translated by 谷歌翻译
Deep convolutional networks have become a popular tool for image generation and restoration. Generally, their excellent performance is imputed to their ability to learn realistic image priors from a large number of example images. In this paper, we show that, on the contrary, the structure of a generator network is sufficient to capture a great deal of low-level image statistics prior to any learning. In order to do so, we show that a randomly-initialized neural network can be used as a handcrafted prior with excellent results in standard inverse problems such as denoising, superresolution, and inpainting. Furthermore, the same prior can be used to invert deep neural representations to diagnose them, and to restore images based on flash-no flash input pairs.
translated by 谷歌翻译
As a common weather, rain streaks adversely degrade the image quality. Hence, removing rains from an image has become an important issue in the field. To handle such an ill-posed single image deraining task, in this paper, we specifically build a novel deep architecture, called rain convolutional dictionary network (RCDNet), which embeds the intrinsic priors of rain streaks and has clear interpretability. In specific, we first establish a RCD model for representing rain streaks and utilize the proximal gradient descent technique to design an iterative algorithm only containing simple operators for solving the model. By unfolding it, we then build the RCDNet in which every network module has clear physical meanings and corresponds to each operation involved in the algorithm. This good interpretability greatly facilitates an easy visualization and analysis on what happens inside the network and why it works well in inference process. Moreover, taking into account the domain gap issue in real scenarios, we further design a novel dynamic RCDNet, where the rain kernels can be dynamically inferred corresponding to input rainy images and then help shrink the space for rain layer estimation with few rain maps so as to ensure a fine generalization performance in the inconsistent scenarios of rain types between training and testing data. By end-to-end training such an interpretable network, all involved rain kernels and proximal operators can be automatically extracted, faithfully characterizing the features of both rain and clean background layers, and thus naturally lead to better deraining performance. Comprehensive experiments substantiate the superiority of our method, especially on its well generality to diverse testing scenarios and good interpretability for all its modules. Code is available in \emph{\url{https://github.com/hongwang01/DRCDNet}}.
translated by 谷歌翻译
插件播放(PNP)框架使得将高级图像deno的先验集成到优化算法中成为可能,以有效地解决通常以最大后验(MAP)估计问题为例的各种图像恢复任务。乘法乘数的交替方向方法(ADMM)和通过denoing(红色)算法的正则化是这类方法的两个示例,这些示例在图像恢复方面取得了突破。但是,尽管前一种方法仅适用于近端算法,但最近已经证明,当DeOisers缺乏Jacobian对称性时,没有任何正规化解释红色算法,这恰恰是最实际的DINOISERS的情况。据我们所知,没有任何方法来训练直接代表正规器梯度的网络,该网络可以直接用于基于插入梯度的算法中。我们表明,可以在共同训练相应的地图Denoiser的同时训练直接建模MAP正常化程序梯度的网络。我们在基于梯度的优化方法中使用该网络,并获得与其他通用插件方法相比,获得更好的结果。我们还表明,正规器可以用作展开梯度下降的预训练网络。最后,我们证明了由此产生的Denoiser允许更好地收敛插件ADMM。
translated by 谷歌翻译
高光谱成像为各种应用提供了新的视角,包括使用空降或卫星遥感,精密养殖,食品安全,行星勘探或天体物理学的环境监测。遗憾的是,信息的频谱分集以各种劣化来源的牺牲品,并且目前获取的缺乏准确的地面“清洁”高光谱信号使得恢复任务具有挑战性。特别是,与传统的RGB成像问题相比,培训深度神经网络用于恢复难以深入展现的传统RGB成像问题。在本文中,我们提倡基于稀疏编码原理的混合方法,其保留与手工图像前导者编码域知识的经典技术的可解释性,同时允许在没有大量数据的情况下训练模型参数。我们在各种去噪基准上展示了我们的方法是计算上高效并且显着优于现有技术。
translated by 谷歌翻译
在弱光环境下,手持式摄影在长时间的曝光设置下遭受了严重的相机震动。尽管现有的Deblurry算法在暴露良好的模糊图像上表现出了令人鼓舞的性能,但它们仍然无法应对低光快照。在实用的低光脱毛中,复杂的噪声和饱和区是两个主导挑战。在这项工作中,我们提出了一种称为图像的新型非盲脱毛方法,并具有特征空间Wiener Deonervolution网络(Infwide),以系统地解决这些问题。在算法设计方面,Infwide提出了一个两分支的架构,该体系结构明确消除了噪声并幻觉,使图像空间中的饱和区域抑制了特征空间中的响起文物,并将两个互补输出与一个微妙的多尺度融合网络集成在一起高质量的夜间照片浮雕。为了进行有效的网络培训,我们设计了一组损失功能,集成了前向成像模型和向后重建,以形成近环的正则化,以确保深神经网络的良好收敛性。此外,为了优化Infwide在实际弱光条件下的适用性,采用基于物理过程的低光噪声模型来合成现实的嘈杂夜间照片进行模型训练。利用传统的Wiener Deonervolution算法的身体驱动的特征并引起了深层神经网络的表示能力,Infwide可以恢复细节,同时抑制在脱毛期间的不愉快的人工制品。关于合成数据和实际数据的广泛实验证明了所提出的方法的出色性能。
translated by 谷歌翻译